
An Empirical Study of Microscaling Formats for
Low-Precision LLM Training

Hanmei Yang∗†, Summer Deng∗, Amit Nagpal∗, Maxim Naumov∗, Mohammad Janani∗, Tongping Liu†, Hui Guan†,
∗Meta, †University of Massachusetts Amherst

Email: {hanmei, summerdeng, amitnagpal, mnaumov, mjanani}@meta.com, {tongping, huiguan}@umass.edu

Abstract—This paper presents a comprehensive evaluation of
microscaling (MX) quantization in the pre-training of large
language models (LLMs), investigating its potential to enhance
the computation and memory efficiencies. We systematically
examine the effects of key design parameters - including data
types, rounding modes, scaling strategies, granularity, and or-
ganization - on numerical accuracy and training stability. Our
extensive experimental study on Llama3 models reveals critical
insights into the challenges of 4-bit training for LLMs and
identifies optimal configurations with mixed precisions of 4-bit
and 6-bit MX formats that significantly enhance training quality,
bridging the gap with higher-precision formats. This research
provides valuable guidance on the benefits and limitations of
MX quantization, laying the groundwork for future innovations
in low-precision LLM training.

I. INTRODUCTION

The recent rapid progress in natural language processing has
been driven by remarkable advancements in large language
models (LLMs), which achieve state-of-the-art performance
in tasks such as machine translation, conversational agents,
and text summarization. However, their impressive capabilities
come with significant computational and memory demands,
posing substantial challenges for efficient training and infer-
ence. To address these challenges, quantization techniques
have gained prominence, reducing numerical precision to
improve efficiency. Formats like FP16 [8], BF16 [7], FP8 [6],
[9], and INT8 [5] have demonstrated notable success, but it
remains uncertain whether precision can be further reduced to
4 bits without compromising convergence or model quality.

Microscaling (MX) formats offer a promising direction [4],
[12], employing shared scaling factors across small groups of
elements to reduce precision while preserving a wide numeri-
cal range. The OCP specification [11] defines the following
MX formats: 1) MXFP8, which supports both E5M2 and
E4M3 data types, where E represents exponent bitwidth and
M represents mantissa bitwidth; 2) MXFP6, which includes
E3M2 and E2M3; 3) MXFP4, which utilizes the E2M1 data
type; and 4) MXINT8, which uses an INT8 data type. All
the OCP MX formats use a group size of 32 and the E8M0
format for the shared scales. Despite their success in inference
tasks [12], the application to LLM training remains largely
unexplored, leaving a significant knowledge gap.

This paper bridges this gap by conducting the first com-
prehensive study of MX quantization in LLM pre-training.
We systematically investigate the numerical fidelity of MX

formats during training, exploring their design space to iden-
tify new recipes that enable stable and efficient training.
Our research focuses on two questions: (1) How does the
default MX quantization method, as specified in the OCP
MX specification [11], impact numerical fidelity during LLM
pre-training? (2) How can we optimize MX quantization to
achieve better stability and performance? To answer these
questions, we performed extensive experiments on 7B-scale
Llama [14] models, evaluating the numerical fidelity of MX
quantization in various configurations. Key contributions of
this work include:

• A systematic study of MX quantization for LLM train-
ing, examining key design choices and their impact on
numerical fidelity and training stability.

• Highlighting the critical insights on the design choices
and identifying effective configurations that leverage a
mix of 4-bit and 6-bit precision to enhance the viability
of low-precision LLM training.

• Demonstrating that carefully tailored MX configurations
can match the training loss performance of FP8 and BF16
baselines, providing valuable guidance to achieve high
fidelity low-precision LLM training.

II. TRAINING WITH MX FORMATS

A. Training Workflow

ch
BF16 weight

W

BF16 input
X

MX weight
W’

MX input
X’

Fwd
GEMM

BF16 output
Y

BF16 gradient
dY

MX gradient
dY’

dW
Bwd

GEMM

dX
Bwd

GEMM

BF16 dW

BF16 dX

FWD BWD

Fig. 1: MX Quantization Emulation Workflow. Weights,
activations, and gradients are quantized into the MX format
during forward and backward passes. As current hardware
lacks native support for MX computation, the quantized MX
tensors are cast back to BF16 for GEMM operations.

Figure 1 illustrates the MX quantization workflow applied
to all linear modules in the Llama model, including QKV and
output projections in the attention layers, as well as the fully
connected layers within the MLPs. All other layers operate

1

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00011

at the default BF16 precision. To ensure numerical stability,
our workflow employs mixed-precision training with a high-
precision weight copy (FP32 or BF16) for the optimizer,
while its memory overhead is mitigated by distributing model
parameters across GPUs with FSDP [16]. As the existing
hardware does not support MX formats yet, we emulated them
with fake quantization. Namely, in the forward pass, weights
and activations are first quantized into the MX format, then
cast back to BF16, before the BF16 GEMM computation.
Similarly, in the backward pass, gradients are fake-quantized
into the MX format and then perform BF16 GEMM compu-
tation. This emulation is hardware-agnostic and implemented
with the torchao library [13]. It enables preliminary numerical
investigations of MX formats on existing hardware, a widely
used approach in prior work [4], [12], before native MX
hardware became available. Recently, with access to NVIDIA
B200 GPUs, we validated our emulation by comparing GEMM
outputs against real MX computations and confirmed that the
emulated GEMM produces identical results.

B. Performance Analysis

ch

Fig. 2: Runtime breakdown of computation for the Llama3
405B model across different quantization configurations, with
speedup factors relative to the BF16 baseline.

To evaluate the potential performance benefits of MX for-
mats, we utilized a performance projection framework that
simulates end-to-end LLM training performance based on
empirical measurement data on today’s hardware. Since MX
formats are not natively supported, we estimated the MXFP4
and MXFP6 GEMM kernel performance by extrapolating the
performance gains observed when transitioning from BF16 to
FP8 precision on different tensor shapes. While these projec-
tions offer an informative reference, the actual performance
ultimately depends on vendor-specific hardware implementa-
tions. For example, if MXFP6 achieves the same throughput as
MXFP8, as seen in Blackwell GPUs [10], MX6 w-a MX4 g
can achieve a 2.11× speedup; if it aligns with MXFP4, the
speedup increases to 2.4×. Figure 2 presents the estimated
runtime breakdown for the Llama3 405B model across various
quantization configurations. Notable observations include:

• MX4 achieves the highest speedup of 2.73×, showing the
maximum efficiency of 4-bit quantization.

• MX4 MLP ONLY applies MX quantization only to the
linear layers in the MLP module but not the attention
module. This option delivers a 2.48× speedup, slightly
less than MX4 for all linear layers, indicating that MLP
layers are the primary computational bottleneck.

• MX6 w-a, MX4 g strikes a balance between precision
and performance with a 2.31× speedup, by using MXFP6
on weights and activations, while MXFP4 on gradients.

• FP8, which employs tensor-wise scaling factors, delivers
a 1.72× speedup relative to the BF16 and serves as a
baseline for evaluating MX quantization configurations.

Beyond runtime efficiency, MX formats can also provide
substantial communication savings with reduced message
sizes. In MX formats, each block shares a common 8-bit scal-
ing factor (E8M0), which just adds an extra of 8/block size
bits to the element bitwidth. For example, MXFP4 with a
block size of 32 has 4.25 bits per element, achieving a 3.76×
reduction in memory and communication overhead compared
to BF16. The benefits of reduced data transfer are particularly
significant in large-scale model training, leading to improved
inter-GPU communications and scalability. Although this pa-
per focuses on runtime analysis, a detailed investigation of
communication savings remains a topic for further research.

III. DESIGN CHOICES FOR MX QUANTIZATION

ch

Fig. 3: Training loss curves for MXFP4, MXFP6, MXFP8,
FP8, and BF16 baseline on the Llama3 7B model, with an
inset highlighting final loss comparisons.

Figure 3 presents the training loss curves in terms of cross-
entropy loss for the Llama3 7B model under various quan-
tization configurations, including MXFP4 (E2M1), MXFP6
(E2M3, E3M2), MXFP8 (E4M3, E5M2), and baseline formats
(FP8, BF16), over 160 million tokens. Among these config-
urations, MX4 E2M1 diverges early after processing around
40 million tokens, while the others appear nearly identical
in the main plot, hence the inset provides a more detailed
comparison. Specifically, MXFP6 and MXFP8 closely match
the FP8 and BF16 baselines, with loss differences within
0.025. In contrast, MXFP4 exhibits a notably larger loss
gap of up to 0.5 compared to BF16 and continues to grow,
indicating that the gap will widen with further training. This
growing disparity uncovers the challenges of default 4-bit MX
quantization and motivates a systematical exploration of the

2

MX design space to overcome these limitations. In this section,
we outline the key design factors driving our investigations.

A. Data Types

Data types define the numerical formats used to represent
each element in a block. Common data types for 4-bit quan-
tization are as follows:

• E2M1: The default MXFP4 format as defined in the OCP
specification, consists of 1 sign bit, 2 exponent bits, and
1 mantissa bit.

• E3M0: A format with 1 sign bit, 3 exponent bits, and no
mantissa, providing maximum dynamic range but reduced
precision. It is recommended for gradients in [2], where
the data is better represented with lognormal distributions.

• INT4: A 4-bit integer format that offers better precision
but with limited dynamic range.

Each data type has unique trade-offs between dynamic range
and precision, making specific formats more compatible with
certain tensor characteristics. Choosing the optimal configura-
tion is crucial for adapting quantization strategies to the data
distributions, thus leading to enhanced training accuracy.

B. Element Rounding Modes

Element rounding mode specifies how each value is rounded
to the nearest representable value during conversion to low
precision. Commonly used rounding modes include:

• Round to Nearest, Ties to Even (RTNE): Rounds each
value to the closest representable number, breaking ties
by rounding to the nearest even value. As the default
rounding mode in the OCP specification, RTNE effec-
tively reduces rounding bias in aggregate computations
and helps maintain numerical stability during training.

• Stochastic Rounding (SR) [3]: Unlike deterministic
rounding, SR rounds a value up or down with a prob-
ability proportional to its proximity to the nearest rep-
resentable values. This method provides a better chance
to preserve the small-magnitude values instead of round-
ing to 0, making it particularly effective for gradient
quantization in low-precision training. For a real number
x between two representable values vlow and vhigh, the
rounded value Round(x) is determined as follows:

Round(x) =

{
vlow, if P <

vhigh−x
vhigh−vlow

,

vhigh, if P ≥ vhigh−x
vhigh−vlow

,
(1)

where P ∼ U(0, 1) is a random variable sampled from a
uniform distribution.

Other rounding modes, such as round ties away, exist but
are not suitable for training due to rounding biases or larger
errors. Therefore, they are not considered in this work.

C. Scale Rounding Modes

The OCP specification defines the scaling format in E8M0,
which restricts values to power-of-2 floating points. Hence, a
rounding mode is required to convert the maximum element
value to the nearest power-of-2, which will be used in the

following down-conversion of the element values. This choice
significantly impacts the dynamic range and precision of
elements. We examined three rounding strategies in this work:

• Floor: Recommended by the OCP specification, this
method calculates the scale S by selecting the maximum
absolute value (max(|Vi|)) within a group of elements,
taking its base-2 logarithm, subtracting the maximum ex-
ponent (maxExp) specific to the data type, and rounding
down to the nearest integer (⌊·⌋):

S = 2⌊log2(max(|Vi|))−maxExp⌋, (2)

where maxExp is a constant specific to the element data
type (e.g., 2 for E2M1 and 4 for E3M0). While this
method is hardware-efficient, its truncation-based scaling
often causes overflows during element down-conversion
in low-precision formats such as MXFP4. This leads to
large values being clamped to the maximum representable
value, which introduces substantial quantization errors
and notable degradation in training accuracy.

• Ceil: Instead of truncating, this method rounds up the
logarithm of the maximum absolute value to the nearest
integer (⌈·⌉) after subtracting the maximum exponent.
The scale S is calculated as:

S = 2⌈log2(max(|Vi|))−maxExp⌉. (3)

Unlike Floor, which risks at clamping large magnitudes
to the maximum representable value, Ceil avoids this
issue by selecting the smallest power-of-2 that is equal to
or greater than max(|Vi|). This ensures that elements are
covered in the representable range. Although it eliminates
the overflow issues, the increased shared scale could
shift more small-magnitude values to zero, exacerbating
underflow issues for smaller elements.

• Even: We propose a new method that uses RTNE mode
for scale calculation, which rounds the maximum absolute
value at the bit position set by the target mantissa bit
width before computing the logarithm:

S = 2⌊log2(Round(max(|Vi|)))−maxExp⌋. (4)

Instead of consistently rounding in one direction, Even
determines the scale based on the numerical distribution,
reducing systematic bias in scale selection. By adaptively
balancing Floor and Ceil, it mitigates excessive clamping
of large magnitudes due to limited mantissa precision
while better preserving smaller ones.

D. Symmetric vs. Asymmetric Scaling

Symmetric and asymmetric scaling define how the scaling
factor captures the range and shift of data distributions:

• Symmetric Scaling: The scaling factor is derived from
the absolute maximum value within a block, as shown in
Equations 2–4. This ensures a symmetric range centered
around zero, simplifying hardware implementation.

3

• Asymmetric Scaling: To better adapt to data distributions
not centered at zero, this method introduces an offset
to shift the quantization range. Specifically, the scaling
factor is determined by the range between the maximum
and minimum values within a block, and the offset is cal-
culated as O = FP16

(
max(Vi)+min(Vi)

2

)
, where FP16(·)

denotes conversion to half-precision floating point.
Asymmetric scaling better accommodates skewed data dis-

tributions, making more efficient use of the quantization range.
However, introducing an offset incurs additional arithmetic
operations, which are typically not compute-intensive due to
vector processing but tend to be memory-bound. Dedicated
hardware can help mitigate these costs, but integrating offset
computations into the pipeline adds logic overhead and design
complexity. As a result, the practicality of asymmetric scaling
depends on hardware resources and the trade-off between
precision and implementation overhead.

E. Scaling Granularity and Organization

Scaling granularity determines the number of elements
sharing a scaling factor within a block, and the organization
specifies their spatial arrangement. The effectiveness of these
configurations heavily depends on the underlying data dis-
tribution. Configurations tailored to match data patterns can
optimize precision and system efficiency, whereas arbitrary
choices can result in inefficiencies and compromised accuracy.

• Granularity: The block size choice in MX formats
involves a trade-off between precision and efficiency.
Smaller blocks capture the data variations more precisely
at a finer granularity, but at the cost of increased stor-
age and computational overhead. Larger blocks, on the
other hand, reduce the storage and computation cost but
may compromise precision, particularly for tensors with
outliers or multimodal data distributions.

• Organization: Organization defines how the blocks are
arranged within a tensor. The default MX formats use
row-wise scaling, where blocks of elements are sequen-
tially selected along the row dimension. Canonically,
the row dimension refers to the reduction dimension in
GEMM operators as the scalar scaling factors along the
reduction dimension pose little overhead in the GEMM
kernel. Other layout options include column-wise scal-
ing, where blocks are formed along the column dimen-
sion, and 2D block-wise scaling, which applies scaling
factors to rectangular tensor sections. These alternative
layouts can more effectively capture feature patterns in
the data, but necessitate additional layout transformations,
adding extra overhead to GEMM operations.

IV. EXPERIMENT RESULTS

A. Effectiveness of Each Design Choice

Figure 4 shows the impact of scale rounding modes (Floor,
Ceil, Even) and element rounding modes (RTNE, SR) on the
training loss of the Llama3 7B model with MX4 E2M1 quan-
tization. RTNE is applied uniformly across all tensor types,

(a) SR is applied to weights (w) and activations (a) in the forward pass.

(b) SR is applied to gradients (g) in the backward pass.

Fig. 4: Impact of scale rounding modes (Floor, Ceil, Even)
and element rounding modes (RTNE, SR) on training loss for
the Llama3 7B model under MX4 E2M1 quantization. The
results are compared against the FP8 and BF16 baselines.

while SR is analyzed separately for weights and activations
in Figure 4a, and for gradients in Figure 4b. The results are
compared to MX4 E2M1 {Floor, Ceil, Even} all RTNE.

From Figure 4a, when RTNE is applied to all tensors, Floor
performs poorly due to overflow issues. Ceil, while avoiding
overflow, exacerbates underflow problems, which results in
suboptimal performance. In contrast, Even outperforms Floor
and Ceil by balancing both overflow and underflow effects.
When Stochastic Rounding (SR) is applied to weights and
activations, the performance of Floor and Ceil degrades signif-
icantly due to the larger quantization errors introduced by SR.
Among these, Floor performs the worst because SR amplifies
overflow issues, which impose higher penalties compared
to errors caused by small-magnitude values. Overall, these
findings suggest that applying SR to weights and activations
generally hurts training stability and accuracy.

In contrast, Figure 4b demonstrates a distinct trend when SR
is applied to gradients. Both Ceil and Even rounding modes
show significant improvements with SR, achieving training
losses comparable to the FP8 and BF16 baselines. This result
highlights the critical role of SR in the gradient quantization,
which is consistent with previous findings [1], [15]. Underflow
issues in gradient quantization often cause small values to be
rounded to zero. As training progresses, this rounding effect

4

accumulates, leading to a gradual degradation of gradients that
severely compromises training stability. Although Floor round-
ing mode slightly mitigates underflow issues when combined
with SR, its high susceptibility to overflow penalties results in
insufficient accuracies. In summary, combining SR with Ceil
or Even rounding yields competitive results. In subsequent
experiments, RTNE is applied to weights and activations,
while SR is used for gradients.

Insight 1: For element rounding mode, RTNE is effective
for weight and activation quantization, whereas SR is
better suited for quantizing gradients.

ch

Fig. 5: Impact of E3M0 on gradient quantization, comparing
E2M1 and E3M0 formats for gradients in the Llama3 7B
model using 4-bit MX quantization.

Figure 5 examines the impact of using E2M1 and E3M0
formats for gradient quantization in the Llama3 7B model.
E3M0 is often regarded as suited for gradient quantization due
to the lognormal distribution of gradient magnitudes, which
exhibit heavy tails and demand a wide dynamic range [2].
However, despite this theoretical alignment, the results show
that E3M0 significantly degrades training performance com-
pared to E2M1 under Floor and Even rounding modes. This
performance drop can be attributed to the increased overflow
penalties introduced by E3M0’s larger dynamic range, which
exacerbates the impact of outliers in these rounding modes.
For instance, under Even rounding, the overflow rate increases
from 0.9% for E2M1 to 3.69% for E3M0, resulting in higher
quantization errors. In contrast, Ceil rounding avoids overflow
absolutely, enabling both E2M1 and E3M0 to perform compa-
rably to the FP8 and BF16 baselines. These findings emphasize
the importance of selecting appropriate rounding modes to
mitigate the specific limitations of different data types.

Insight 2: For gradient quantization, E3M0 performs well
only with Ceil rounding, while E2M1 works effectively
with both Ceil and Even rounding modes.

To efficiently assess quantization effects without conducting
full training experiments, we employ rooted mean squared
error (R-MSE) as a proxy metric. R-MSE measures the

Fig. 6: Correlation between normalized R-MSE and training
loss gap for the Llama3 7B model.

deviation between original and quantized values, providing an
efficient and reliable indicator of numerical fidelity. To validate
this approach, we analyzed its correlation with training loss
gaps by calculating R-MSE from weight tensors at a fixed
training step and measuring loss gaps while fixing activation
and gradient quantization and varying weight quantization.
Figure 6 demonstrates a strong correlation between normalized
R-MSE and training loss gap, confirming R-MSE as a viable
alternative for evaluating quantization impact. Building on this
validation, we employ the R-MSE metric as the proxy to
systematically investigate the MX quantization design space
in subsequent experiments.

ch

Fig. 7: Impact of scale rounding modes (Floor, Ceil, Even)
on R-MSE for the first weight tensor of all MLP layers,
comparing E2M1 and INT4 formats.

Figure 7 investigates the impact of scale rounding modes
(Floor, Ceil, Even) on R-MSE for the first weight tensor across
MLP layers, comparing E2M1 and INT4 formats. The results
show that E2M1 consistently outperforms INT4 in terms of
R-MSE across all configurations. Specifically, Even rounding
mode yields the best performance for E2M1, consistent with
previous findings. In contrast, Ceil rounding mode excels for
INT4, as its ability to prevent overflow aligns well with INT4’s
limited representable range. These trends are not limited to
weight tensors; similar behaviors are observed for activations
and gradients, indicating the general applicability of these
findings across different tensor types.

5

Insight 3: With the E8M0 scale, E2M1 performs best with
Even rounding, while INT4 excels with Ceil rounding.
Under default MX conditions, E2M1 consistently outper-
forms INT4.

ch

Fig. 8: Impact of symmetric and asymmetric scaling on the
R-MSE of the first weight tensor across all MLP layers for
E2M1 Even and INT4 Ceil formats.

Figure 8 evaluates the impact of symmetric and asymmetric
scaling on the R-MSE of the first weight tensor across all
MLP layers for E2M1 Even and INT4 Ceil formats. Asym-
metric scaling adjusts the quantization range to better align
with skewed distributions, helping to mitigate overflow and
underflow errors. For E2M1 with Even rounding, asymmetric
scaling slightly reduces R-MSE compared to symmetric scal-
ing, while for INT4 with Ceil rounding, asymmetric scaling
significantly reduces R-MSE across all layers. This difference
can be attributed to the limited dynamic range and even bit
allocation in INT4, which makes it more restrictive to data
distributions. Focusing the quantization range on dominant
values, asymmetric scaling reduces quantization errors and
minimizes the influence of outliers. Similar trends are observed
for activations and gradients, as well as for tensors extracted at
different training stages. These consistent findings across var-
ious tensor types and training phases reinforce the conclusion
that the benefits of asymmetric scaling are format-dependent.

Insight 4: Asymmetric scaling significantly improves
quantization accuracy for INT4, while offering only slight
improvements for E2M1.

Figure 9 illustrates the impact of reducing block size from
32 to 16 on the R-MSE of the first weight tensor across all
MLP layers for E2M1 Even and INT4 Ceil formats under
symmetric and asymmetric scaling. Reducing the block size
generally improves quantization accuracy by capturing finer
variations within smaller groups of data. For E2M1 Even
with symmetric scaling (blue lines), this results in only slight
reductions in R-MSE, as E2M1’s higher dynamic range al-
ready handles tensor variations well, even with larger block
sizes. Asymmetric scaling (green lines) provides a modest
additional benefit, but the overall gains remain limited. For
INT4 Ceil, block size reduction has a much greater impact.

ch

Fig. 9: Impact of block size reduction (from 32 to 16) on
the R-MSE of the first weight tensor across all MLP layers
for E2M1 Even and INT4 Ceil formats under symmetric and
asymmetric scaling.

Under symmetric scaling (orange lines), small blocks sig-
nificantly lower R-MSE, achieving approximately 6.47× the
improvement seen with E2M1. With asymmetric scaling (red
lines), the reductions in R-MSE are even more pronounced,
reaching up to 1.36× better results than symmetric INT4.
These trends are consistent across activations and gradients,
and the improvements are due to INT4’s narrower dynamic
range, where smaller block sizes and asymmetric scaling better
capture local variations and mitigate outliers.

Insight 5: Symmetric scaling with E2M1 has the least
benefit from block size reduction, while both asymmetric
scaling and INT4 gain significantly.

Figure 10 and 11 analyze the impact of block organi-
zation (row-wise, column-wise, and 2D block-wise) on the
R-MSE for weights and activations, respectively, comparing
E2M1 Even and INT4 Ceil formats under symmetric (a) and
asymmetric (b) scaling. From Figure 10, weight tensors show
no benefits from column-wise blocks (16×1) or 2D blocks
(4×4), regardless of whether symmetric or asymmetric scaling
is used. Similarly, gradients exhibit trends consistent with
weights. In contrast, Figure 11 reveals that activation tensors
experience substantial R-MSE improvements with column-
wise blocks, particularly under asymmetric quantization. This
difference arises from the columnar structure of transformer
models, where activations for a given token are stored in a
column. This layout creates concentrated value distributions,
allowing column-wise blocks to align scaling factors more
effectively with the data. However, column-wise memory
access is inefficient due to non-contiguous layouts, requiring
large strides that reduce performance. 2D block-wise scaling
mitigates this issue by combining aspects of column-wise
scaling with vectorized memory access, while also supporting
tensor partitioning in parallel computation to reduce commu-
nication overhead. The absence of quantization benefits for
weights and gradients suggests that their distributions are less
affected by block organization. These trends persist across
training steps, highlighting the unique scaling requirements
of activations compared to weights and gradients.

6

(a) Applying symmetric scaling under different block organizations.

(b) Applying asymmetric scaling under different block organizations.

Fig. 10: Impact of block organization (row-wise vs. column-
wise vs. 2D block-wise) on R-MSE for the first weight tensor
across all MLP layers, comparing E2M1 Even and INT4 Ceil
formats under symmetric and asymmetric scaling.

Insight 6: Column-wise blocks enhance activation quanti-
zation, while 2D blocks strike a balance between precision
and efficiency. However, neither approach yields signifi-
cant improvements in weight or gradient quantization.

B. Effectiveness of 4-bit MX Training

Figure 12 presents the training loss curve of the Llama3
7B model over an extended number of steps, covering 100
million tokens. Two 4-bit MX configurations are evaluated: 1)
the first employs E2M1 with Even scaling and uses stochastic
rounding for gradient quantization; 2) the second utilizes Ceil
scaling, E2M1 on weights and activations, and E3M0 with
stochastic rounding on gradients. Both configurations perform
well during training, with loss curves closely tracking the FP8
and BF16 baselines for most of the process. While slight
divergences appear between 22 and 33 million tokens, the
loss curves eventually stabilize and converge, achieving an
average loss gap of just 0.02 compared to the baselines by
the end of training. These results highlight the promise of 4-
bit quantization for pre-training tasks under carefully selected
configurations. However, when training is resumed from a
pre-trained checkpoint, purely 4-bit configurations struggle to
maintain accuracy, as shown in Figure 13. In such scenarios,
employing mixed-precision strategies that integrate 4-bit and
6-bit quantization provides a more stable and robust solution,

(a) Applying symmetric scaling under different block organizations.

(b) Applying asymmetric scaling under different block organizations.

Fig. 11: Impact of block organization (row-wise vs. column-
wise vs. 2D block-wise) on R-MSE for the second activation
tensor across all MLP layers, comparing E2M1 Even and
INT4 Ceil formats under symmetric and asymmetric scaling.

effectively striking a balance between numerical accuracy and
computational efficiency. This finding implies that tailoring
quantization strategies to distinct training phases can help
accommodate diverse precision requirements.

ch

Fig. 12: Training loss of Llama3 7B over extended steps using
symmetric quantization with E2M1 and E3M0 formats.

V. CONCLUSION

In this paper, we presented the first comprehensive study
on microscaling (MX) quantization for LLM training, with a
focus on the MXFP4 format. We systematically explored the
critical design choices and summarized the insights as follows:

7

ch

Fig. 13: Training loss of Llama3 7B from a checkpoint trained
on 157 billion tokens, comparing purely 4-bit and mixed 4-bit
and 6-bit configurations.

• Data Types and Rounding Modes: E2M1 works well
with both Ceil and Even rounding but achieves better
results with Even rounding. E3M0 is effective for gradient
quantization only with Ceil rounding. INT4 also requires
Ceil rounding to perform well. Stochastic Rounding (SR)
is essential for gradient quantization, while RTNE re-
mains effective for weights and activations.

• Symmetric vs. Asymmetric Scaling: Asymmetric scal-
ing significantly benefits INT4 quantization by handling
skewed data distributions, whereas E2M1 exhibits minor
improvements due to its higher dynamic range.

• Block Granularity and Organization: Reducing block
size improves quantization accuracy, with INT4 under
asymmetric scaling showing the largest gains. Column-
wise blocks greatly enhance activation quantization by
aligning scaling factors with the token dimension in
transformer-based model architectures, while 2D blocks
provide moderate improvements and better flexibility to
transpose operations during training.

• Training Performance: Carefully selected 4-bit con-
figurations achieve loss curves closely matching FP8
and BF16 baselines when training from scratch. How-
ever, when training from pre-trained checkpoints, mixed-
precision of 4-bit and 6-bit quantization better maintains
accuracy alignment with FP8 and BF16.

These findings demonstrate the promise of low-precision
formats in achieving competitive LLM training accuracy,
underscoring the necessity of data-aware and phase-specific
quantization configurations. To further optimize low-precision
training accuracy, we plan to scale experiments to larger
models with extended durations, and further refine design
choices during different pre-training or fine-tuning stages for
enhanced numerical fidelity and training stability.

Nevertheless, the successful application of low-precision
numerical formats requires holistic HW/SW co-design to guar-
antee the consistent support of numerical features across the
system stack, from the tensor/vector operator support in hard-
ware, kernel implementations, to user interfaces in mainstream
ML frameworks, etc. For example, asymmetric scaling will
require extra hardware support in handling the offsets. Finer-

granularity and 2D scaling methods also need extra hardware
and kernel support for both GEMM and conversion operators.
This paper discusses the performance potential from low-
precision LLM training, as well as the critical quantization
recipes to guarantee the numerical accuracy. We expect our
investigations to provide valuable guidelines on MX support
in both hardware and software to deliver the best performance
and accuracy trade-offs for LLM training systems.

REFERENCES

[1] B. Chmiel, R. Banner, E. Hoffer, H. Ben-Yaacov, and D. Soudry,
“Accurate neural training with 4-bit matrix multiplications at standard
formats,” in The Eleventh International Conference on Learning Repre-
sentations, 2023.

[2] B. Chmiel, L. Ben-Uri, M. Shkolnik, E. Hoffer, R. Banner, and
D. Soudry, “Neural gradients are near-lognormal: improved quantized
and sparse training,” in International Conference on Learning Repre-
sentations, 2021.

[3] M. Croci, M. Fasi, N. J. Higham, T. Mary, and M. Mikaitis, “Stochastic
rounding: implementation, error analysis and applications,” Royal Soci-
ety Open Science, vol. 9, no. 3, p. 211631, 2022.

[4] B. Darvish Rouhani, R. Zhao, V. Elango, R. Shafipour, M. Hall,
M. Mesmakhosroshahi, A. More et al., “With shared microexponents,
a little shifting goes a long way,” in Proceedings of the 50th Annual
International Symposium on Computer Architecture, 2023, pp. 1–13.

[5] T. Dettmers, M. Lewis, Y. Belkada, and L. Zettlemoyer, “Gpt3. int8 ():
8-bit matrix multiplication for transformers at scale,” Advances in Neural
Information Processing Systems, vol. 35, pp. 30 318–30 332, 2022.

[6] M. Fishman, B. Chmiel, R. Banner, and D. Soudry, “Scaling
fp8 training to trillion-token llms,” 2025. [Online]. Available:
https://arxiv.org/abs/2409.12517

[7] D. Kalamkar, D. Mudigere, N. Mellempudi, D. Das, K. Banerjee,
S. Avancha, D. T. Vooturi, N. Jammalamadaka, J. Huang, H. Yuen
et al., “A study of bfloat16 for deep learning training,” 2019. [Online].
Available: https://arxiv.org/abs/1905.12322

[8] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” in International Conference on Learning Represen-
tations, 2018.

[9] P. Micikevicius, D. Stosic, N. Burgess, M. Cornea, P. Dubey,
R. Grisenthwaite, S. Ha, A. Heinecke, P. Judd, J. Kamalu,
N. Mellempudi, S. Oberman, M. Shoeybi, M. Siu, and H. Wu,
“Fp8 formats for deep learning,” 2022. [Online]. Available: https:
//arxiv.org/abs/2209.05433

[10] NVIDIA, “Nvidia blackwell architecture technical brief,” 2024,
accessed: 2025-02-23. [Online]. Available: https://resources.nvidia.com/
en-us-blackwell-architecture

[11] Open Compute Project, “Ocp microscaling formats (mx) v1.0
specification,” 2023. [Online]. Available: https://www.opencompute.org/
documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf

[12] B. D. Rouhani, R. Zhao, A. More, M. Hall, A. Khodamoradi,
S. Deng, D. Choudhary, M. Cornea, E. Dellinger, K. Denolf
et al., “Microscaling data formats for deep learning,” 2023. [Online].
Available: https://arxiv.org/abs/2310.10537

[13] torchao maintainers and contributors, “torchao: Pytorch native
quantization and sparsity for training and inference,” Oct. 2024.
[Online]. Available: https://github.com/pytorch/torchao

[14] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux,
T. Lacroix, B. Rozière, N. Goyal, E. Hambro, F. Azhar et al., “Llama:
Open and efficient foundation language models,” 2023. [Online].
Available: https://arxiv.org/abs/2302.13971

[15] S. Wiedemann, T. Mehari, K. Kepp, and W. Samek, “Dithered backprop:
A sparse and quantized backpropagation algorithm for more efficient
deep neural network training,” in Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition Workshops, 2020,
pp. 720–721.

[16] Y. Zhao, A. Gu, R. Varma, L. Luo, C.-C. Huang, M. Xu, L. Wright,
H. Shojanazeri, M. Ott, S. Shleifer, A. Desmaison, C. Balioglu,
P. Damania, B. Nguyen, G. Chauhan, Y. Hao, A. Mathews, and S. Li,
“Pytorch fsdp: Experiences on scaling fully sharded data parallel,”
2023. [Online]. Available: https://arxiv.org/abs/2304.11277

8

