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Abstract—To date, the most promising methods for 8-bit DNN
training use two different floating-point formats: a 5-bit ex-
ponent for greater range on gradients in the backwards pass,
and a 4-bit exponent with less range but greater precision
for representing weights and activations in the forward pass.
Ordinarily, subnormal representations are also used to extend
the range and provide gradual underflow, but subnormals
require considerable special-case logic which increases the cost
of area-critical operators such as multiply-accumulate units.
Instead, this paper proposes to replace traditional subnormals
with what we call supernormal values where mantissa bits
are converted into exponent bits at both the subnormal/zero
and infinity ends of the range. Hence, supernormals provide
maximal range extension by sacrificing some precision at both
ends. The logic required to implement supernormals is a trivial
change to existing logic that processes normalised values, thus
avoiding the logic overhead of subnormals while providing a
larger range extension. We use the range extension provided by
supernormals in new mixed-precision 8-bit formats to showcase
training results that are comparable to the state-of-the-art
while showing an area savings.

1. Introduction

The current trend in boosting the efficiency of DNN
training accelerators is to use ever-smaller smaller floating-
point formats as much as possible for computing and stor-
age. Smaller element sizes facilitate higher performance
by reducing memory footprint, bandwidth demand, power
consumption, and cost per operation.

In particular, 8-bit floating-point (FP8) formats have be-
come attractive in recent years, partly due to the availability
of dedicated hardware for FP8 arithmetic [1] and various
standardization efforts such as the OpenCompute Project
FP8 specification [2] and the IEEE P3109 Working Group’s
Interim Report [3]. Going back to 2019 [4], a growing
consensus among such studies are recommendations for two
different formats to be used in 8-bit DNN training: (a) for
gradients, use 5 bits of exponent for a sufficiently large
representation range, and (b) for weights and activations, use
3 bits of mantissa to ensure adequate numerical accuracy.
These formats are commonly called E5M2 and E4M3 based

on the number of exponent and mantissa bits.1

The dynamic range of values used during training of
ResNet-32 on CIFAR-100 varies for weights (roughly 25
binades, from 2−25 to 20), activations (roughly 30 binades,
from 2−25 to 25) and gradients (roughly 35 binades, from
2−40 to 2−5) [5]. We have reproduced our own training
histograms with ResNet-20 in Figure 1. The range required
by gradients exceeds the natural range of E5M2 (31 bi-
nades without subnormals, 33 binades with subnormals). A
property shared by all distributions is a lopsided histogram,
where the most-frequently used values crowd the upper
end of the range (towards infinity), leaving a long tail at
the lower end (towards zero). To closely match this usage,
the OCP FP8 formats and the preliminary IEEE P3109 8-
bit formats all include subnormal representations, thereby
broadening the range at the small end where it is in demand.

However, handling subnormals requires considerable
special-case logic, which can have a big impact on the
cost of area-critical operators such as multiply-accumulate
(MAC) units. In the multiplier input stage, subnormals
typically require renormalizing (which includes a count-
leading-zero, variable-left-shift and an exponent-adjust for
each operand) prior to entering the multiplier array. This
subnormal overhead can be significant in small precision
formats; removing subnormal inputs can save 25% to 40%
of the multiplier logic [6] in an 8-bit fused MAC design. To
save area, some commercial cores flush subnormals to zero.

The objectives of this paper are to simplify subnormal
representations while increasing dynamic range. Ideally, this
would also eliminate the need to use two different numerical
formats (E5M2 and E4M3) during 8-bit DNN training.
Although NVIDIA has shown both formats can be supported
together in hardware, there is some area cost. However,
there is considerably more complexity added to software
frameworks because both the training algorithms and the
DNN models need to select the best data types. This extra
complexity does not exist with 16-bit or larger formats.

To meet these objectives, this paper presents an al-

1. In this paper, we precisely use the current IEEE P3109 encodings [3]
named binary8p3 and binary8p4, corresponding to E5M2 and E4M3,
respectively. P3109 and OCP FP8 formats use a different exponent bias.
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(a) Weights (b) Activations (c) Gradients wrt Activations (d) Gradients wrt Weights

Figure 1: ResNet-20 training distributions (binary32 without DLS; x-axis are tensor values, y-axis is count).

ternative to subnormal encoding called supernormals. It
does this by replacing the subnormal encoding bin with
normalized encodings and converting all mantissa bits into
an exponent offset. This range extension can also be done
at the upper end by replacing the NaN-encoding bin with
supernormals. This provides power-of-2 spacing of values
at both ends. While there is some loss of precision, it is
limited to the extreme ends of range and produces a more
gradual underflow/overflow. Since all values are normalized,
no logic is needed to renormalize subnormal mantissas. In
addition, supernormals offer range expansion not present in
OCP, P3109, or posits [7]: the number of binades allocated
to range expansion is a design parameter.

The rest of this paper explores the use of supernormals
in 8-bit DNN training to show its viability as a new format.

2. Background

2.1. Mixed-Precision Training

The training acceleration landscape is dominated by
mixed-precision training (MPT) approaches [5], [8]–[12].
Master copies of weights are generally kept and updated in
high precision. Whereas binary32 single-precision arith-
metic (E8M23) was once common [8], researchers now
use 16-bit encodings [9]–[11] such as binary16 half-
precision (E5M10) and bfloat16 (E8M7). A reduced
memory footprint enables larger models, lower power, and
faster training. Higher-precision values are then cast down
to a lower precision, e.g. to 8-bit [9], for use in forward and
backward GEMM computations. While the GEMM outputs
are represented with a higher precision, all inputs (weights,
activations, and gradients) are encoded with low precision.
The low-precision gradients are, in the end, used to update
high-precision master copies of the weights.

2.2. Scaling Strategies

The danger with using low-precision formats, especially
during training, is that they have a much reduced dynamic
range compared to a 32-bit baseline. This tends to be
problematic, especially when computing gradients.

A standard approach [8], [9], [11] is to globally scale
the loss function (by a value typically ranging from 28

TABLE 1: 8-bit Encodings and Values (sign bit omitted)

Pfx/Exp/Mant Signif. Exponent Numeric Value
P3109 binary8p3 (E5M2)
1111111// - - ∞
/eeeee/mm 1.mm eeeee–16 {2−15 to 215} × (1 + mm/4)
00000//mm 0.mm –15 2−15 × mm/4
0000000// 0.0 - 0 (NaN when negative)
* eeeee ranges from 00001 to 11111
Proposed Supernormal, 1 binade (E5M2B1)
1111111// - - ∞
11111/EEU/ 1.0 EE+15 215, 216, 217

/eeeee/mm 1.mm eeeee–16 {2−15 to 214} × (1 + mm/4)
00000/EEL/ 1.0 EE–19 2−18, 2−17, 2−16

0000000// 0.0 - 0 (NaN when negative)
* eeeee ranges from 00001 to 11110, EEU ̸= 11, EEL ̸= 00
Proposed Supernormal, 2 binades (E5M2B2)
1111111// - - ∞
1111/EEEU/ 1.0 EEE+14 214 to 220

/eeeee/mm 1.mm eeeee–16 {2−14 to 213} × (1 + mm/4)
0000/EEEL/ 1.0 EEE–22 2−21 to 2−15

0000000// 0.0 - 0 (NaN when negative)
* eeeee ranges from 00010 to 11101, EEEU ̸= 111, EEEL ̸= 000

to 220) before executing backpropagation if a NaN or in-
finity appears in previously computed tensors, and rescale
the computed gradients back at the end before performing
the parameter updates. Used proactively, this dynamic loss
scaling (DLS) strategy shifts quantities that would normally
underflow or overflow back into a representable range.

This approach is too coarse-grained and insufficient in
certain contexts [11]. In such cases, DLS can be comple-
mented or replaced with tensor scaling (TS) approaches [11]
or fine-grained sub-tensor (i.e., block) methods [13], [14].

3. Supernormal Floating-Point Representation

We introduce a novel 8-bit floating-point format in-
corporating a supernormal regime, designed to extend the
representable numerical range for very large and very small
values. In conventional floating-point systems, the largest
exponent value is typically reserved for NaNs and infini-
ties, and the smallest exponent value represents subnormals.
In our proposed format, shown in Table 1, these largest
and smallest exponent encodings instead indicate that the
mantissa field encodes an additional offset to the exponent,
enabling representation of much larger or smaller values.
The number of largest and smallest exponent encodings
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TABLE 2: Fused MAC Unit Area and Breakdown (# ALMs)

Mult. Inputs Mult. Adder (E5M10) MAC
(a) E5M3 34.0 188.0 222.5
(b) E5M3-nosub 20.0 188.0 208.5
(c) E5M2 27.0 182.5 210.0
(d) E5M2B1 24.5 185.0 210.0

that are converted to the supernormal regime is specified
in binades with a design parameter B. The use of su-
pernormals provides a range extension at large and small
values, sacrificing precision in the supernormal range.

The remaining representable values within the normal-
ized range use the IEEE P3109 8-bit encoding rules.

Supernormals aim to better represent the typical value
ranges observed during DNN training, where extremely
large or small values are needed but less commonly en-
countered [5]. The ability to capture these extreme values
is important for convergence, especially at low precision.

4. Experimental Results

Table 2 reports the number of Intel FPGA ALMs for
different fused MAC unit designs. Fused means multiplier
outputs are not rounded or normalized before the accu-
mulator. In all cases, the accumulator uses a binary16
(E5M10) adder including subnormals, and no DSP blocks
are needed due to narrow multiplier inputs. The 9-bit MAC
unit in row (a) supports both E5M2 and E4M3 inputs. Rows
(b) and (c) save logic area in traditional ways. Row (b)
‘nosub’ replaces subnormal code points on the multiplier
inputs with normalized values, reducing dynamic range. In
contrast, row (c) uses an 8-bit MAC (E5M2) but requires
similar area. Finally, row (d) uses E5M2B1, the proposed
new format where supernormals replace one binade at each
end of the range to save area and expand dynamic range by
23.

We use two models to test the training flexibility of
our proposed encodings. The first is a 0.27M parameter
ResNet-20 convolutional neural network architecture [15]
on the CIFAR10 image recognition dataset. The second is a
15M parameter version of the Llama 2 [16] family of large
language models (LLMs) trained for text generation on the
TinyStories [17] dataset. The training hyperparameter setups
are the same previous work for ResNet [15] and the Llama2
repository2. All tests are performed on an NVIDIA 4090
RTX GPU with 24GB of RAM.

The MPT approach is identical to previous work [5],
[11], as discussed in Sec. 2.1. Master copies of the weights
are kept in high precision, either a 32-bit or a 16-bit format.
In contrast, all the input signals to GEMM computations
during the forward and backward pass are downcast to an
8-bit representation. In general, some form of dynamic loss
scaling and/or tensor/block scaling is needed to account for
the loss in range when using such narrow formats.

2. See https://github.com/karpathy/llama2.c

To achieve this, we extended mptorch3, a PyTorch-
based framework for custom-precision arithmetic. Our for-
mats use a quantization function applied before multipli-
cation in GEMM operations, emulating the usage of a
mixed-precision MAC. Denoting the quantization function
by Q and using the forward pass of a linear layer as an
example, we have z = Q(WT )Q(x) + b, where W is the
weight matrix, x is the input activation matrix, and z is
the output activation matrix. The intermediate accumulations
are not quantized and are represented in either IEEE 754
binary16 (E5M10) or binary32 (E8M23) formats.

Results are summarized in Table 3. The dynamic loss
scaling (DLS) [8] and tensor scaling (TS) [11] columns indi-
cate whether DLS or TS is required for convergence during
MPT.4 The first row for each networks gives the baseline
training results using IEEE-754 binary32 arithmetic and
serves as a comparison point for all other mixed-precision
configurations.

The second group of rows (R2/L2 to R4/L4) compare
using E5M2 and E4M3 8-bit encodings. It is common prac-
tice in most 8-bit MPT configurations to use 4-bit exponents
for weights/activations and 5-bit exponents for gradients.
Rows R2/L2 and R3/L3 use the P3109 encodings group for
binary8p4 (E4M3) and binary8p3 (E5M2) formats,
which include subnormal values. The dynamic ranges for
these two formats correspond to approximately 18 and 33
binades, respectively. The following row (R4) removes sub-
normals from these formats by treating the smallest binade
as part of the normalized range, leading to 31 binades of
dynamic range for E5M2-nosub. While this makes logic
simpler, and is effective for the ResNet example, the limited
dynamic range is not sufficient to ensure convergence for the
LLM example.

Instead, the proposed supernormal representation from
Sec. 3, E5M2B1, improves range to 36 binades with train-
ing results shown in rows R5/L5. Varying the number of
supernormal binades showed that a one-binade configuration
offered the best results when DLS and/or TS were used.

It is promising to note that the parameterizable range
extension enabled by the number of binades may in certain
cases simplify training logic and might remove the need for
scaling approaches. This is the case for the ResNet-20 train-
ing example, where the 4-binade supernormal encodings
(E5M2B4) in row R6 reach baseline accuracy levels. This
is not the case for the Llama2 (not shown). Nevertheless,
this suggests that supernormal-based encodings could be
more easily used in edge training scenarios where we expect
models to be relatively small.

5. Conclusions

This paper has proposed a replacement for subnormals,
called supernormals. Dynamic range can be extended by
replacing mantissa bits at both upper and lower ends of the

3. See https://github.com/mptorch/mptorch
4. TS is not available in our ResNet-20 model.
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TABLE 3: Accuracy results for a ResNet-20 CNN and a Llama2 LLM in a mixed-precision training scenario.

Weights/Activations Gradients GEMM Accumulator DLS [8] TS [11] Val. Acc./Loss

ResNet-20

(R1) E8M23 E8M23 E8M23 no N/A 91.72%
(R2) E4M3 E5M2 E8M23 req. N/A 91.85%
(R3) E5M2 E5M2 E5M10 req. N/A 91.31%
(R4) E5M2-nosub E5M2-nosub E5M10 req. N/A 91.34%
(R5) E5M2B1 E5M2B1 E5M10 req. N/A 91.61%
(R6) E5M2B4 E5M2B4 E5M10 no N/A 91.46%

llama2.c

(L1) E8M23 E8M23 E8M23 no no 1.14736
(L2) E4M3 E5M2 E8M23 req. req. 1.14833
(L3) E5M2 E5M2 E5M10 req. req. 1.16494
(L4) E5M2-nosub E5M2-nosub E5M10 req. req. diverges
(L5) E5M2B1 E5M2B1 E5M10 req. req. 1.16629

Notes: E8M23 and E5M10 are the IEEE 754 formats, binary32 and binary16, respectively. E5M2 and E4M3 are the IEEE P3109 formats,
binary8p3 and binary8p4, respectively. E5M2-nosub replaces subnormals with normalized values. E5M2Bb is binary8p3 with 2b total
binades of supernormals.

represented range with an additional exponent offset, result-
ing in a 1-bit mantissa in those regions. Additional range
extension at either end is possible by replacing multiple
binades at either end with supernormals. Since all values
are normalized, values can be manipulated without adding
subnormal complexities. Our area results demonstrate that
one-binade supernormals (E5M2B1) are more area efficient
than formats with subnormals and rival formats without
subnormals. Furthermore, our training results show that su-
pernormals on ResNet-20 can achieve comparable accuracy,
and with enough binades one single numeric format can
eliminate the need to perform dynamic loss scaling. On
Llama2, training could not converge without subnormals,
but it did converge with supernormals at a validation loss
within 1–2% of the binary32 baseline. This demonstrates
that supernormals require less area, are nearly competitive
with binary32, and may eventually help alleviate some
of the issues we presently see with dynamic scaling.

Limitations. This work should be considered prelim-
inary; it is not a final format recommendation. To gen-
erate results quickly, we used NVIDIA tensor cores with
binary16 accumulators which do not have adequate range
for supernormals. In future work, we will use bfloat16
without tensor core acceleration. Our supernormal imple-
mentation presently extends the upper and lower ranges by
the same number of binades. Since more range is needed
in the lower end than the upper end, we should configure
these separately. We also need to modify how DLS works;
the present method of using any infinity/NaN to adjust the
scale factor aligns the top end of the values to the top end
of the format. Instead, scaling should align the mode of the
tensor values to a specific ‘centering point’ in the target
format (such as 2−5).
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