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Abstract—Floating-point fused multiply-add (FMA) operations
are fundamental in many fields such as scientific computing,
graphics processing, and machine learning. In conventional
floating-point FMA designs, the internal steps of multiplication
and addition, which are performed using integer arithmetic, are
followed by a post-processing stage. It has been known that
the post-processing stage contributes to approximately 60% of
the total latency of the double-precision FMA operation. We
propose a novel trailing-ones anticipation technique that predicts
trailing-ones bits of the mantissa before rounding, in parallel
with the post-processing stage. With this technique, the rounding
incrementer can be implemented using a single XOR operation,
thereby reducing the total latency. We evaluated the latency
using Synopsys Design Compiler for synthesis, confirming that
the proposed technique reduced total latency by 4%.

Index Terms—High-Speed Arithmetic

I. INTRODUCTION

Fused multiply-add (FMA) operations are fundamental in
many fields such as scientific computing, machine learning,
and graphics. Despite their widespread adoption, designing
an efficient FMA unit is significantly more difficult than im-
plementing standalone addition or multiplication units. These
challenges have driven extensive research efforts to refine
FMA unit designs toward higher performance.

Our goal is to reduce the latency in FMA units. Figure 1
shows the architecture of a conventional FMA unit [1]. The
figure focuses on the mantissa calculation, which constitutes
the critical path. The computation is performed in the follow-
ing steps: (1a) The partial products of the mantissa of the
multiplicand (Mul-A) and multiplier (Mul-B) are generated.
(1b) In parallel, the digits of the addend are shifted using the
align shifter. (2) The partial products and the shifted addend
are combined in a Wallace tree, and the result is obtained in
a redundant binary representation. (3a) The redundant binary
result is summed using a parallel prefix (dual) adder to obtain
the absolute value in binary representation. (3b) In parallel,
the number of leading zeros in the absolute value is predicted
with at most one error using the leading zeros count anticipator
(LZA). (4) The absolute value is shifted by the predicted
number of digits using the normalizing shifter. (5) If there
is an error in the predicted shift amount, it is corrected using
the LZA error correction unit. (6) The rounding direction is

determined. (7) If away-from-zero rounding is required, 1 is
added to the result using the rounding incrementer.

In this design, optimizing the post-processing stages (stages
(3a) and beyond) is important. Although the multiplier used
in (1a) occupies a significant portion of the circuit area, the
post-processing stages, despite their smaller footprint, make
a notable contribution to the overall latency. Specifically, the
latency arises from stages (3a/3b), (4), and (7), each requiring
circuits with logic depth proportional to the logarithm of the
mantissa bit width (N ). Furthermore, these stages are sequen-
tially dependent, increasing the overall latency. As a result, the
post-processing stages contribute to a significant part of the
overall latency of this design. According to Srinivasan et al.,
the post-processing latency accounts for approximately 60%
of the FMA calculation time [2].

Improvements of these post-processing stages have been
widely studied. Lang et al. demonstrated a novel usage of
a dual adder to serve both the computation of absolute
values (taking the two’s complement) and the addition of 1
in the rounding incrementer [3]. Lutz proposed methods to
apply LZA even when the result is a denormal number and
introduced an approach to determine errors in the shift amount
at an early stage [4]. Sohn et al. showed that the computation
of the absolute value and the addition of 1 can be shared
without employing dual adder techniques. They also presented
a method for handling denormal number inputs with hardly
increasing the latency [5].

However, these techniques do not alter a fundamental char-
acteristic of the post-processing stages; each of the stages
(3a/3b), (4), and (7) has a logic depth of approximately logN ,
resulting in a total logic depth of about 3 logN .

To address these challenges, we propose trailing-ones an-
ticipation (TOA) designed to perform additional computations
in parallel with stages (3a/3b) to (6). By leveraging the
capabilities of TOA, the logic depth of stage (7) is effectively
reduced to O(1). Consequently, the total logic depth of the
post-processing stages is reduced to approximately 2 logN .
Our evaluation indicates that while the introduction of TOA
increases the circuit area, it reduces the overall latency of the
post-processing stages by 4%.

The structure of this paper is as follows. Section II provides

21

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00014



Addend

Align Shifter
pp

Mul-A Mul-B

Wallace Tree

Parallel Prefix
(Dual) Adder

Normalize
Shifter

Leading Zeros 
Anticipator

<<1 LZA error correction (5)

+1 Rounding incrementer (7)

Final result

(1a)
(1b)

(2)

(3a)(3b)

(4)

Round direction
decision

(6)

Addend

Align Shifter
pp

Mul-A Mul-B

Wallace Tree

Parallel Prefix
Adder

Normalize
Shifter

Leading Zeros 
Anticipator

<<1 LZA error correction 

SEL

Final result

Round direction
decision

Trailing-Ones 
Anticipator

<<1

XOR

(a) Conventional Architecture (b) Proposed Architecture

Po
st

-p
ro

ce
ss

in
g 

st
ag

es

LSB

MSB

SEL

LSB

MSB

Fig. 1. Floating-point fused multiply-add unit architectures. Our proposed trailing-ones anticipator effectively reduces the rounding incrementor delay to
O(1).

a review of the conventional FMA architecture. In Section III,
we describe the proposed method, trailing-ones anticipation,
and Section IV presents its evaluation.

II. CONVENTIONAL FMA ARCHITECTURE

A. Partial product generator (1a)
The partial product generator produces partial products

from the mantissa of the multiplier and multiplicand. To
optimize this process, Radix-4 Booth encoding is commonly
employed, as it reduces the number of partial products, thereby
minimizing both latency and circuit area. Although the latency
of the partial product generator, which includes the Booth
encoder and selector, is often assumed to be O(1), it is actually
Θ(logN). This latency arises from the need for multiple
buffers to handle high-fanout signals, such as the selection
signals.

To further reduce circuit area, higher-radix Booth encoding
methods, such as radix-8 and radix-16, are sometimes em-
ployed [5]. However, these methods require hard multipliers
to compute values that cannot be generated by simple shifting,
such as multipliers that calculate three, five, or seven times the
multiplicand. The delay of these hard multipliers is Θ(logN).

The input to the Booth encoder depends on whether the
multiplier or multiplicand is a normalized or denormalized
number. Consequently, determining whether the number is
normalized is on the critical path. Sohn et al. proposed a
speculative approach that assumes a number is normalized,
begins the computation, and applies corrections if the assump-
tion proves incorrect. This approach effectively eliminates the
determination of whether the number is a normalized number
from the critical path [5].

B. Addend alignment shifter (1b)
The addend alignment shifter aligns the mantissa of the ad-

dend to the multiplier output. The shift operation is performed

sequentially, controlled by each bit of the shift amount, from
the least significant bit (LSB) toward the most significant bit
(MSB). This approach optimizes both delay and circuit area.
The circuit comprises log2(3N+O(1)) 2:1 selectors arranged
in series, resulting in a delay time of Θ(logN).

C. Wallace tree (2)

The Wallace tree adds all the partial products generated in
(1a) with the aligned addend generated in (1b), outputting the
result in a redundant binary representation. A Wallace tree is
constructed from numerous 3:2 carry-save adders (CSAs). To
optimize overall delay, the aligned addend from (1b) is added
after partial products from (1a) have been partially summed.
The critical path of this circuit involves the application of 3:2
CSAs to reduce the number of partial products to 2, resulting
in a delay time of Θ(logN).

While a Wallace tree is used as a representative example
here, many alternative network structures are available. De-
pending on factors such as delay and wiring length, a different
network structure may provide better performance [6].

D. Parallel prefix dual adder (3a)

First, we will describe a simple parallel prefix adder (PPA)
instead of a parallel prefix dual adder.

1) Parallel prefix adder: The parallel prefix adder computes
Gi:0 (0 < i ≤ N ) using the propagate (P ) and generate (G)
signals, which are defined as follows.

Pi:j =

i−1∧
k=j

ak ⊻ bk (1)

Gi:j =

i−1∨
k=j

Pi:k+1 ∧ ak ∧ bk (2)
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Intuitively, Pi:j means that if a carry is generated in the j-
th digit, it propagates through to the i-th digit. Similarly, Gi:j

means that based solely on the digits from j to i − 1, it can
be determined that a carry is generated in the i-th digit. For
any k such that i > k > j, the following equations hold:

Pi:j = Pi:k ∧ Pk:j (3)
Gi:j = Gi:k ∨ (Pi:k ∧Gk:j) (4)

Using this formula, the circuit area can be optimized by
extracting the common parts from the computation process of
Gi:0 (0 < i ≤ N ). The circuit implementing equations (3)
and (4) is shown in Figure 2(a) and is referred to as a prefix
box.

It is well known that circuit area, fan-out, and logic
depth cannot be simultaneously optimized [7]. The Kogge-
Stone configuration is recognized for compromising on circuit
area, the Sklansky configuration for compromising on fan-
out, and the Brent-Kung configuration for compromising on
logic depth. Additionally, many intermediate configurations
that balance these trade-offs are also known [7].

This circuit of the simple PPA requires at least log2 N prefix
boxes in series, resulting in a delay time of Θ(logN).

2) Parallel prefix dual adder: The parallel prefix dual adder
is a high-speed binary adder implemented using end-around-
carry, capable of simultaneously computing A + B and A +
B + 1 [8]–[10]. This functionality is essential when taking
the two’s complement of a result that is negative. The dual
adder achieves this by computing not only Gi:0 but also Pi:0

(0 < i ≤ N ). Since the circuits required for these calculations
are largely shared, the increase in circuit area is minimal.

3) Simplified Two’s Complement Handling in a PPA: In
contrast, Sohn et al. proposed a method that requires only a
simple PPA, eliminating the need for a dual adder by utilizing
a rounding incrementer [5]. This method leverages the fact
that the increment for rounding and the increment for taking
the two’s complement occur mutually exclusively, thereby
removing the need to compute the two’s complement within
the PPA. Instead, computing the ones’ complement is sufficient
within the PPA.

E. Leading zeros count anticipator (LZA) (3b)

LZA is a circuit that computes the leading zeros count of
A+B with an error of at most 1, without requiring the binary
representation of A + B. In practice, a circuit known as an
absolute leading zeros count anticipator is used to compute the
leading zeros of |A+B + 1| with the same conditions [11].

This circuit consists of two components: a circuit that
computes the predicted value L and a circuit that determines
the leading zeros count of L. The circuit for computing the
predicted value L is an O(1)-stage circuit that outputs a value
satisfying the following conditions, with a possible single-bit

position error:
• In the leading zeros portion of |A+B + 1|: 0
• In the digit where the most significant 1 of |A+B + 1|

appears: 1
• In the digits below that: arbitrary
The delay time to output the MSB of the predicted value of

the leading zeros count is Θ(logN), as it requires a NOR
operation with an input size of 3N + O(1). Additionally,
to output the LSB of the predicted value, a stage count
approximately twice that of the MSB is required. To reflect
this delay, the LZA is depicted in Figure 1 (3b) with a diagonal
cutout. The critical path is not determined solely by the LZA
but is influenced by its combination with the normalizing
shifter, as described below.

Lutz proposed a method for generating predicted values
to handle irregular shifts when the result is a denormalized
number. Specifically, this is achieved by setting a 1 at a specific
bit position to prevent additional shifts [4].

F. Normalizing shifter (4)

The normalizing shifter is a circuit that shifts the absolute
value computed in (3a) by the leading zeros count predicted
in (3b). Delay and circuit area can be optimized by shifting
sequentially according to each bit of the shift amount, starting
from the MSB. This circuit consists of log2(3N + O(1))
2:1 selectors arranged in series, resulting in a delay time of
Θ(logN).

G. LZA error correction (5)

Since the LZA may output a shift amount that is one less
than the correct value, the LZA error correction circuit shifts
the output from (4) by one additional bit if its first bit is
0. The delay of this circuit is often considered O(1) from
a pure logic perspective. However, in practice, it is actually
Θ(logN) because multiple buffers are required to drive high-
fanout selector signals for the shift.

To address this issue, Lutz proposed a method for deter-
mining early whether this adjustment is necessary [4]. In the
method, the bit corresponding to the first bit of the output
of (4), the selection signal, is extracted using an OR tree in
parallel with the shift operation in (4). To achieve this, a mask
is created using a one-hot vector with only a bit corresponding
to the first bit of (4). This process can be performed in parallel
with (3a/3b), with a delay time of Θ(logN).
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H. Round decider (6)

The round decider is a circuit that examines the least
significant part of the bit sequence obtained in (5) to determine
whether the number should be rounded away or toward zero.
While the delay time of this circuit is O(1) with respect to
the bit width, its complexity may place it on the critical path.

Lutz proposed a method to determine the rounding direction
early by extracting the required bits like that described in the
previous section [4].

I. Rounding incrementer (7)

The rounding incrementer adds 1 to the mantissa when stage
(6) determines that rounding away from zero is required. The
delay of this circuit is Θ(logN).

III. PROPOSED METHOD — TRAILING-ONES ANTICIPATION

A. Key idea

We propose a trailing-ones anticipator (TOA), a circuit
designed to predict the trailing ones of the output from a nor-
malizing shifter, thereby reducing the latency of the rounding
incrementer. Figure 1(b) presents a simplified block diagram
of the proposed FMA circuit incorporating TOA. TOA signifi-
cantly reduces the delay of the rounding incrementer compared
to the conventional design shown in Figure 1(a).

The key idea relies on the observation that if the trailing
ones of a value are known, the addition of 1 can be per-
formed using a simple XOR operation. For example, consider
incrementing the 4-bit value 0b1011, which has trailing ones
0b0011. By XORing the original value with the result of
shifting a 1-bit to the left (0b0110) and then inverting the
least significant bit (LSB) of the result, the incremented value
0b1100 is obtained. This process intuitively demonstrates that
the carry resulting from adding 1 propagates only to higher-
order bits within the trailing-ones section.

B. Overview

The circuit overview implementing TOA is shown in Fig-
ure 3. A special adder is introduced to compute a + b + 2K

for inputs a and b in redundant binary representation. Here,
2K corresponds to the power of two associated with the least
significant bit of the mantissa after shifting by the amount
predicted by the LZA. This special adder directly computes
a+ b+ 2K using a parallel prefix network, without explicitly

Parallel prefix 
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Lower-than-MSO(E) 
mask generator

E

a b

a’ b’

G

SEL

OR4

Bitonic
Sorter
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Fig. 4. Architecture of trailing-ones anticipator

a             0001010111111000101001000110100010111101000
b             1110101000111111111010101111110101111000010

L             0000000000101000100100010110101000101010101

E = L>>N      0000000000000000000000010100010010001011010
MSO(E)        0000000000000000000000010000000000000000000
a’            1111111111000111010011101001010111000101010
b’            0000000001110001010000001101000001110000000
a’+b’         0000000000111000100011110110011000110101010
Trailing ones 0000000000000000000011110000000000000000000

N-bit shift

mantissa (N+1 bits) after normalizing shift

↓ predicted MSB of mantissa
(LZA estimate)

↓ predicted LSB of mantissa

Fig. 5. The computation example of trailing ones

calculating K or 2K . By XORing a+ b+ 2K with a+ b and
then performing a normalization shift, the anticipated trailing
ones are obtained.

The special adder used in TOA differs from the existing
dual adder described in Section II-D2. While that dual adder
is designed to compute both a+b and a+b+1 at the same time,
it can only add 1 to the number before shifting. Consequently,
it cannot compute a+b+2K , which corresponds to adding 1 to
the number after shifting. The core contribution of this paper
is the development of this special adder, which is capable of
computing a+ b+ 2K .

C. Architecture of trailing-ones anticipator

Figure 4 illustrates the detailed circuit architecture of TOA,
while Figure 5 provides an example bit sequence used in the
subsequent explanation. First, TOA uses an O(1)-stage circuit
to generate an estimate E, which approximates 2K . In parallel,
a and b are processed through a half-adder array to convert
them into a′ and b′. Next, a′+b′+MSO(E) is computed using
a parallel prefix network that incorporates a custom prefix
box. Here, MSO(x) denotes a binary number in which all
bits except the most significant 1 of x are set to 0. The result
a′ + b′ +MSO(E) represents the desired intermediate output.
The following sections provide a detailed explanation of each
module.
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D. Generation of estimating value of 2K

The procedure for obtaining 2K poses challenges in reduc-
ing total latency. This is because computing 2K concretely
requires a circuit with a logical depth of Θ(logN), where N
is the bit width of the mantissa. To address this issue, we
adopt an approach that uses E = L ≫ N as a surrogate
for 2K . Here, we leverage the fact that the predicted value L
output by the LZA closely approximates 2K when shifted N
bits to the right.

E. Half adder array

For general inputs a and b, it is not possible to compute
a + b + MSO(E) using existing parallel prefix adders. This
limitation arises because two separate carries can be generated
in the same digit.

To address this issue, a half-adder array is employed to
transform a and b into two values, a′ and b′, such that a+b =
a′ + b′. By passing a + b through the half-adder array, the
following inequality is satisfied for any i:

i∑
k=0

2k(a′k + b′k) < 3 · 2i (5)

This ensures that when a′ + b′ + MSO(E) is computed, the
carry from any digit will be at most 1 (and will not be 2).
This is guaranteed because the following inequality holds:

i∑
k=0

2k(a′k + b′k +MSO(E)k) < 4 · 2i (6)

F. Prefix network

The proposed method utilizes a prefix network with a prefix
box that computes the following P̈ and G̈ in addition to P and
G. The structure of this prefix box is illustrated in Figure 2(b).

P̈i+1:i = ai ⊻ bi ⊻ Ei (7)

G̈i+1:i = (ai ∧ bi) ∨ (bi ∧ Ei) ∨ (Ei ∧ ai) (8)

P̈i:j = (P̈i:k ∧ Pk:j) ∨ (Pi:k ∧ P̈k:j) (9)

G̈i:j = G̈i:k ∨ (P̈i:k ∧Gk:j) ∨ (Pi:k ∧ G̈k:j) (10)

Intuitively, G̈i:j indicates a generate signal when pMSO(E)
is between bit positions i − 1 and j, and similarly, P̈i:j

indicates a propagation signal under the same condition. Here,
pMSO(X) represents the position of the most significant 1 in
X .

The right-hand sides of the equations for P̈ and G̈ are
formed by summing terms derived from the corresponding
equations for P and G, with exactly one variable in each term
replaced by its umlaut version. If a term contains multiple
variables, it is split into multiple terms, each with exactly
one variable modified. The resulting equation cannot contain
a term with more than one umlaut-modified variable (such
as P̈i:k ∧ G̈k:j) because pMSO(E) corresponds to a single bit
position and thus it cannot simultaneously exist between both
i and k and between k and j.

G. Lower-than-MSO(E) mask

A lower-than-MSO(E) mask M can be generated by the
following simple procedure.

M = E >> 1;
for shamt in { 1, 2, 4, 8, 16, ... }:

M |= M >> shamt;

Note that the smask that Lutz introduced [4] is equivalent
to this. In addition, the one-hot mask described by Lutz [4]
can be calculated by E&˜M and is equivalent to MSO(E).

H. Select G/G̈

The generate signal for a′+b′+MSO(E) is defined as Gi:0

when i < pMSO(E), and G̈i:0 otherwise. In the following, we
call this Ge. Using the lower-than-MSO(E) mask, this can be
expressed as (G&M)|(G̈&˜M).

I. Anticipated trailing ones

The XOR of a′+b′ and a′+b′+MSO(E) gives the predicted
value of trailing ones. a′+b′ can be expressed as a′⊕b′⊕(G ≪
1) and a′ + b′ + MSO(E) can be expressed as a′ ⊕ b′ ⊕
MSO(E)⊕(Ge ≪ 1). MSO(E) is E&˜M. Thus, the predicted
value of trailing ones, before normalization shifting, can be
determined using (E&˜M)|(((GˆG̈)&˜M)<<1). The value
of a+ b+ 2K itself does not need to be explicitly computed.

J. Bitonic sort-based shifter

The value output above is a bitonic sequence, which enables
a highly efficient normalization shift. A bitonic sequence is
defined here as a number represented by the regular expression
0∗1∗0∗. For such a bitonic sequence, bitonic sorting can be
performed to shift the 1s to the right in Θ(logN) steps. Since
trailing ones, by their nature, start from the least significant
end, sorting is functionally equivalent to normalization shift-
ing. Therefore, the normalization shifter for general numbers
can be replaced with a bitonic sorter.

The bitonic sorter is the circuit shown in Figure 6(a). It
should be noted that the number of stages can be halved
by using logic elements such as NAND4 and OAI22 without
increasing transistor count.

0 0 1 1 1 0 0 0

0 0 0 0 1 0 1 1

0 0 0 0 1 0 1 1

0 0 0 0 0 1 1 1

(a) Bitonic sorter (b) OR4 preprocess

Fig. 6. Bitonic sorter-based shifter
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The width of the sorting circuit can be reduced. This circuit
can correctly sort inputs such as 1∗0∗1∗ as well as 0∗1∗0∗. In
addition, the input (4N+O(1) bits) does not contain more than
N + 1 1 bits. Therefore, the same result can be obtained by
dividing the output value into four parts, performing a bitwise
OR on them, followed by sorting, as illustrated in Figure 6(b).

The whole trailing-ones anticipator circuit is faster than the
other paths due to the very lightweight bitonic sorter-based
shifter circuit. The parallel prefix adder inside the trailing-
ones anticipator has a longer latency than the main parallel
prefix adder because of the prefix box complexity. Still, the
total latency is shorter than the other paths thanks to the low-
latency shifter circuit.

K. Anticipation-error correction

The predicted values of the trailing-ones output above may
require correction. The incorrect predictions come from the
fact that the predicted value L in the leading zeros count
anticipator may be off by one bit. If the predicted value
may have an error of one bit, it means that we predicted
the trailing ones from the second last place of the mantissa
before rounding. This can be dealt with by classifying the
cases according to whether the pre-rounded mantissa is even
or odd, or in other words, whether the last place is 0 or 1, as
follows.

If the last place of the mantissa before rounding is 0, +1
can be achieved by simply changing the bit at this position to
1. In this case, the predicted trailing ones are not used.

If the last place of the mantissa before rounding is 1, then +1
can be achieved by setting the last position to 0 and performing
an XOR operation on the other parts with the anticipated
trailing ones shifted 1 bit to the left.

L. Negative case handling

Calculating a + b + MSO(E) by itself is insufficient to
calculate trailing ones when a+ b is negative; therefore, it is
also necessary to calculate −a− b+MSO(E). We have been
unable to find a circuit configuration that can simultaneously
compute both a+b+MSO(E) and −a−b+MSO(E). Research
into such circuit configurations will be the subject of future
work. In this paper, we address this problem by presenting a
circuit that calculates ã+̃ b+MSO(E), in addition to a circuit
that calculates a+ b+MSO(E).

M. Whole architecture

Figure 7 shows the whole architecture of the trailing-
ones anticipator and final mantissa calculation. LZA error
correction, selection with special values, e.g., Inf or NaN, and
rounding selection are all critical paths. We found that the
latency could be optimized by performing these steps in the
order shown in the figure.

First, XOR the output of the normalization shifter with the
anticipated trailing ones. Even if the LZA is mispredicted, the
combination of bit positions to be XORed remains the same,
thus the XOR can be performed before the LZA correction.
Next, correct the LZA error. This procedure is performed
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G
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Round-away mantissa
LZA error correction

!special case & round-away?
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LZA mispredict?

SEL

Odd/even selection

Fig. 7. Whole architecture of trailing-ones anticipator and final mantissa
calculation

second, considering the latency involved in buffering signals
with high fan-out. In parallel, the special values are selected
on the low-delay side. Finally, the selection is made according
to the rounding direction. The rounding direction takes longer
to determine and has more fan-out; thus the selection using it
is done last.

IV. EVALUATION

A. Methodology

To evaluate the effectiveness of the proposed method, we
synthesized IEEE 754-compliant double-precision floating-
point FMA circuits for multiple target frequencies, then ana-
lyzed their latency and area. The FMA circuits, based on both
the existing and proposed techniques, were implemented in
SystemVerilog. The synthesis was performed using Synopsys
Design Compiler with a standard cell library derived from the
ASAP7 7nm finFET predictive process design kit (PDK) [12].

We implemented the following two FMA designs based on
existing technology to compare with the proposed method.
(1) First, we implemented the FMA design presented in [5],
which is described as a design for the Intel E-Core processor.
This design is oriented towards saving circuit area and was not
intended to pursue high-speed operation. (2) Second, building
on the above design, we implemented an improved version
aimed at achieving higher speed. Specifically, we replaced
Radix-16 Booth encoding by Radix-4 Booth encoding. Fur-
thermore, we improved the LZA error correction and rounding
decision circuits using Lutz’s mask method, as described in
Sections II-G and II-H.

In our evaluation, the following components were automat-
ically generated using Synopsys Design Ware. (1) For the
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Wallace tree part: we observed that unconventional circuits
were generated by the tool to optimize latency. (2) For the
leading zeros count part: the generated circuits seemed to be
faster than the LZC circuits described in [5], but slightly larger
in area. (3) For all adders: it was observed that unconventional
circuits were generated by the tool to optimize latency, in
particular, for the main parallel prefix adder.

Since the prefix network used in the proposed trailing-ones
anticipator cannot be automatically synthesized by Design
Ware, we manually implemented Kogge-Stone, Sklansky, and
Brent-Kung networks and evaluated their performance.

B. Result

Figure 8 presents the evaluation results of latency and area
under various timing constraints. The results indicate that the
FMA unit using the proposed method achieves a latency re-
duction of over 30 ps compared to models employing existing
acceleration methods. However, the circuit area increased by
26% when the PPA within the proposed method was im-
plemented using the Brent-Kung or Sklansky configurations.
Although the Kogge-Stone configuration is generally regarded
as fast, its use in the PPA within the proposed method did
not yield additional latency improvement and unnecessarily
increased the circuit area. There was no significant difference
in area between the Brent-Kung and Sklansky configurations.
This appears to be due to the optimization in Design Compiler,
which significantly altered the network structure.

Table I shows a breakdown of the critical path latency
from the synthesis results. The proposed method significantly
reduced latency by replacing the rounding incrementer with
a simple XOR operation. Additionally, we confirmed that the
trailing-ones anticipation circuit was not on the critical path.

Table II shows the synthesis results for the area of each
module. Modules added by the proposed method are high-
lighted in bold. The core of the proposed method, the special
PPA, is approximately 3.4 times larger than a standard PPA.
This increase can be attributed to two factors: the presence of
two PPAs and the larger size of the prefix box. On the other
hand, the bitonic sorter-based shifter is approximately one-
fourth the size of a conventional shifter, which aligns with
predictions based on its circuit structure.

V. RELATED WORK

Even and Seidel proposed an injection-based rounding
method for floating-point multipliers [13]. Their method
achieves fast rounding by adding an appropriate value, de-
termined by the rounding mode, to the product before the
parallel prefix dual adder. The correct value to add differs
based on whether the normalized result is less than two or
not, but employing the dual adder and a selector can absorb
the difference. These approaches share similarities with our
proposed method.

A key difference between multiplication and FMA is
whether the position of the least significant bit after normal-
ization can be known before addition. In multiplication, the
position of the least significant bit is known with at most a
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one-bit error. By contrast, in the FMA, this position cannot
be determined before the addition. Therefore, determining the
appropriate value to add is not straightforward, motivating the
development of the special adder.

Conversely, our special adder is limited to adding numbers
that are powers of two. This leaves implementing injection-
based rounding methods requiring other values as an open
problem for FMA units.

VI. CONCLUSION

The FMA operation is one of the most commonly used
floating-point operations, and significant efforts have been
made over the years to accelerate its implementation. However,
the post-processing stages consist of three stages arranged in
series, each requiring a latency of approximately logN , and
have not seen direct improvements until now.

To address this issue, we proposed a technique named
trailing-ones anticipation. The core innovation of this tech-
nique is a special adder capable of computing a + b + 2K .
With this adder, we achieved a reduction in the post-processing
stages to about two logN stages. Furthermore, since TOA is
largely orthogonal to existing techniques, it can be combined
with them to achieve further optimizations.

Our evaluation demonstrated that the proposed method
reduces latency by about 4%, with a 26% increase in circuit
area.
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