
Hardware Fixed-Point 2D and 3D norms
Romain Bouarah, Florent de Dinechin

INSA Lyon - Inria, CITI (UR3720), 69621 Villeurbanne, France
{romain.bouarah, florent.de-dinechin}@insa-lyon.fr

Abstract—This article studies the hardware implementation
of the Euclidean norm in 2 and 3 dimensions with fixed-point
inputs and outputs. It compares the CORDIC shift-and-add
algorithm to a “naive” architecture combining squarers, adders
and square root, with a common specification: faithful accuracy.
This specification is used in both cases to determine bounds
on architectural parameters such as the number of CORDIC
iterations and the bit-width of internal data-paths. Several
architectural variants of the “naive” architecture are investigated.
Their relevance domains are discussed based on synthesis results
on FPGAs. For two dimensions, CORDIC has lower area but
longer latency than a well-researched naive version. 3D variants
of CORDIC, however, are worse than the naive architecture both
in area and delay.

Index Terms—Computer arithmetic, hardware operator, Eu-
clidean norm, fixed point, CORDIC

I. INTRODUCTION

The Euclidean norm appears in many application domains
such as graphics, signal and image processing, and scientific
simulations. It is used among others to compute Euclidean
distance, to normalize vectors, or to convert from rectangular
to polar coordinates. Each application has specific precision
and performance requirements. To match these needs, this
work studies two parametric techniques for computing fixed
point Euclidean norms in hardware. The first is CORDIC, a
classic fixed-point iterative computation. The second is derived
from the definition of the N -dimensional norm:

∥(X1, ..., XN)∥2 =

√√√√ N∑
i=1

X2
i (1)

It is therefore a naive combination of squarers, adders and
square root. However this article attempts to implement this
combination as cleverly as possible.

A. Common notations and setup

For the description of unsigned (resp. signed) fixed-point
numbers, we use the notations ufix(m, ℓ) (resp. sfix(m, ℓ))
where m and ℓ are integers denoting bit weights: the most
significant bit (MSB) has weight 2m, the least significant bit
(LSB) has position 2ℓ, and m ≥ ℓ [4]. These bits are included,
so the size of an sfix(m, ℓ) or ufix(m, ℓ) is m− ℓ+ 1 bits in
both cases. The value 2ℓ is also the unit in the last place (ulp)
of the format. For sfix(m, ℓ), the most significant bit of weight
2m is the sign bit.

This work was partially supported by the PEPR IA HOLIGRAIL project
of the Agence Nationale de la Recherche, ANR-23-PEIA-0010

For any positive scaling factor s, we have√
(sx)2 + (sy)2 + (sz)2 = s

√
x2 + y2 + z2. We therefore

consider without loss of generality that the fixed-point inputs
are in the interval [−1, 1). This corresponds to an input
format sfix(0, ℓin) where ℓin < 0.

With inputs in [−1, 1), the outputs belong to the interval
[0,

√
2] for the 2D norm and [0,

√
3] for the 3D norm. The

norm is obviously unsigned, and its MSB is a bit of weight
20 in both cases. Its format is therefore ufix(0, ℓout) where ℓout
is a parameter controlling the accuracy of the output. Note that
when ℓin = ℓout, the input and output bit-width are identical.

B. Scope of this work

The operators studied here are parameterized by ℓin and ℓout,
and their specification is to always return faithful (or last-bit
accurate) results [6] [4, p. 76]: they have to return one of the
two fixed-point numbers closest to the exact (often irrational)
value of the norm. Equivalently, the difference between the
returned fixed-point number and the exact norm should be
strictly smaller than 2ℓout .

An error analysis attempts to optimize architectural param-
eters while respecting this specification. This analysis is target
independent and the resulting architectures are equally suited
to ASICs and FPGAs. However, our comparisons target FP-
GAs only, and any conclusion drawn from these comparisons
may not apply to ASICs (although the methodology will).
In detail, all the results in this article have been obtained
using Vivado 2024.1 targeting a Xilinx/AMD Kintex7, part
xc7k70tfbv484-3, post synthesis. All the operators are combi-
natorial and can be pipelined, but due to lack of space only
combinatorial results are reported.

This work is implemented in the FloPoCo core generator1

as the Fix2DNorm and Fix3DNorm operators. It reuses many
of the existing FloPoCo components.

C. State of the art

The CORDIC algorithm (COordinate Rotation DIgital
Computer) was introduced by Volder in 1959 to compute
trigonometric functions and norms using rotations [25]. An
extensive reference for all CORDIC variants is [14]. The
simplest CORDIC variants use only shift-and-add operations,
and are well suited to FPGAs thanks to their support of
fast-carry additions. This work focuses on this approach,
contributing a rigorous method for determining the minimal
datapath sizes that enable faithful rounding. Radix-4 [24] and

1www.flopoco.org, git branch articles/2025-arith-norms

29

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00015

exact sum of squares

X
sfix(0, ℓin)

Y Z

normalizer

Sufix(1, 2ℓin)

L = 2K + i

iK
n.Fufix(0, ℓ)

S ∈ [0, 3]

n.F = ⌊22K+i−1S⌋ℓ

n =

{
0 if S = 0

1 if S ̸= 0n
F

i

PW
√

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.2 0.4 0.6 0.8 1

i.F ∈ [0, 2)

A ∈ [0, 1)
ufix(0, ℓ)

right shifter

Mufix(0, ℓout)

ufix(0, ℓout)

10

0

R
ufix(0, ℓout)

Fig. 1: High-level architecture of naive solution

higher [1] variants are left for future work – we discuss them
briefly in Section V.

Beyond CORDIC, a handful of works have developed
digit-recurrence techniques focused on the Euclidean norm in
floating point [22] or in an online context [12]. In terms of cost
and latency, these architectures are expected to be quite similar
to high-radix CORDIC, and are also discussed in Section V.

The 2D norm has also been used in the evaluation of
a generic method for two-input function evaluation [17].
However the results reported are really not competitive with
the specialized methods studied here.

II. NAIVE ARCHITECTURE FOR 2D AND 3D

This solution is naive in the sense that it consists in
computing the sum of squares then taking the square root of
the sum.

For n-bit signed inputs (n = 1 − ℓin), the exact squares
are 2n bits, and their sum S is 2n + 1 bits. This entails
two problems. Firstly, in the typical case where the inputs
and output have the same size n, we have internally to
compute the square root of a 2n-bit number. Secondly, this
large input can be arbitrarily close to 0, where the square root
has a singularity (infinite derivative). This prevents the use of
polynomial approximation methods and SRT [7] techniques.
A solution to both problems is a range reduction to a kind of
internal floating-point format. We first describe it, then analyze
its numerical behaviour before discussing architectural variants
for the subcomponents.

A. Overview

The proposed implementation is shown in Fig. 1.

It begins with an exact sum of squares, described in more
details in Section II-C. The exact S = X2+Y 2(+Z2) belongs
to [0, 2] in the 2D case and [0, 3] in the 3D case: its format is
ufix(1, 2ℓin) in both cases.

A first idea is to compute the leading zero count (LZC) L of
S, write it L = 2K+i where i is its LSB, shift the input by 2K
to obtain a quasi-normalized mantissa S′ ∈ [1, 4), and evaluate
M ≈

√
S′. Then we have

√
S ≈ 2KM . An issue with this

approach is that the interval [1, 4) is not hardware-friendly. For
instance if we tabulate

√
S′, one fourth of the address space

is unused. The following is a slightly more complex approach
that solves this issue.

The normalizer component is a combined leading zero
counter and shifter [4, p. 323] which computes a floating-
point representation of the fixed-point input. If it were exact,
it would output a normalized mantissa S′ of the form 1.F (a
ufix(0, 2ℓin − 1)) and a leading zero count L with the identity

S = 2−L+1S′ (2)

where the +1 is due to the MSB position being 1 in the input.
However, we use a truncating variant that outputs a

ufix(0, ℓ), in other words it keeps only the 1−ℓ most significant
bits. The value of l will be determined in Section II-B.
The truncated mantissa output of the normalizer is thus an
ufix(0, ℓ) number n.F :

n.F = ⌊S′⌋ℓ = ⌊2L−1S⌋ℓ (3)

Here n, the leading bit, is zero only if S was itself zero: this
bit controls a mux that returns 0 in this case (bottom of Fig. 1).

Otherwise, n = 1, the value of n.F is 1+F with F ∈ [0, 1).
We also decompose L as L = 2K + i, where i is the least
significant (parity) bit of L, such that

√
S ≈

√
2−2K−i+1(1 + F) = 2−K

√
21−i(1 + F). (4)

Now the factor 2−K can be implemented by a right shifter .
As 1− i is a boolean (the complement of i), from there on

we have two cases [3, 13]:{
if i = 0

√
S ≈

√
2−2K+1(1 + F) = 2−K

√
2(1 + F)

if i = 1
√
S ≈

√
2−2K(1 + F) = 2−K

√
1 + F .

(5)
FloPoCo offers various function approximation techniques

for a fixed-point function defined on [0,1). To leverage them,
we need to combine the two cases above in a single function.
To this purpose, replacing n with i = 1 − i yields a number
i.F ∈ [0, 2). This bit vector can be interpreted as a number
A ∈ [0, 1) whose value is:{

if i = 0 (i = 1) A = 0.5 + F/2 hence F = 2A− 1

if i = 1 (i = 0) A = F/2 hence F = 2A
(6)

and finally, combining (5) and (6), the piecewise function on
[0, 1) that cover both cases is

f(A) =

{√
4A when A ≥ 0.5 (case i = 0)√
1 + 2A when A < 0.5 (case i = 1)

(7)

30

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0 0.2 0.4 0.6 0.8 1
A

f(A)

Fig. 2: The piecewise square root used in the naive norm

A plot of this piecewise function is given in Fig. 2. Note
that the inverter on i could be saved, but then function f(A)
is no longer continuous and monotonic, which crashes the
existing approximation code in FloPoCo. Indeed the function
is actually entered as

f(A) = t(A)
√
4A + (1− t(A))

√
1 + 2A (8)

where t(A) is an approximation to the Heaviside step function:

t(A) =
1

1 + eC(A−0.5)
with C a large constant. This tinkering

is numerically expensive2, but works well. The PW
√

block
in Fig. 1 is either a correctly rounded table, or a faithful
piecewise approximation using either multipartite tables or
piecewise Horner polynomials of degree 2 to 4. The discon-
tinuity of the derivative at f(0.5) is not a problem as soon
as these piecewise methods split the input interval [0, 1) in at
least 2 sub-intervals.

B. Error analysis and parameter optimization

Let R be the final value returned by the architecture as
depicted in Fig. 1. The architecture is faithful if

|R−
√
S| < 2ℓout (9)

(reminding that S is the exact sum of the squares of the inputs).
We have here three sources of error:

• The truncation in (3) can be rewritten

1 + F = 22K+i−1S − δF with 0 ≤ δF < 2ℓ . (10)

• M is an approximation to the square root:

M = f(A) + δM (11)

with either |δM | ≤ 2ℓout−1 (correct rounding), or |δM | <
2ℓout (faithful rounding).

• The final shift also discards bits:

R = 2−KM − δshift with 0 ≤ δshift ≤ 2ℓout − 2ℓout−K .
(12)

2Some of the larger operators take several hours to produce, which is strictly
due to this pseudo-threshold function.

The error bound on δshift reads as follows: if K = 0, there is
no shift, therefore δshift = 0; if K = 1 we lose at most one bit
of weight 2ℓout−1; if K = 2 we lose at most two bits whose
maximum value is 2ℓout − 2ℓout−2; and so on.

Now we may rewrite

R−
√
S = R− 2−KM + 2−K(M − 2K

√
S). (13)

We remark that as soon as |M −2K
√
S| < 2ℓout , we will have

|R−
√
S| ≤ |R− 2−KM | + 2−K |M − 2K

√
S|

< 2ℓout − 2ℓout−K + 2ℓout−K (14)

and our objective (9) will be satisified. Our new objective is
therefore that M is faithful to 2K

√
S:

Objective: |M − 2K
√
S| < 2ℓout (15)

This is rewritten

M − 2K
√
S = M − f(A) + f(A)− 2K

√
S

= δM + f(A)− 2K
√
S . (16)

Here f(A) =
√

21−i(1 + F) exactly, as the computation of
A out of (i, F) is implemented with exact bit operations. The
only error source in f(A) − 2K

√
S is the truncation error

captured in (10). We may thus rewrite

f(A)− 2K
√
S =

√
21−i(1 + F)− 2K

√
S (17)

=
√

22KS − δF − 2K
√
S using (10)

= 2K(
√

S − δF −
√
S) (18)

= 2K
√
S(

√
1− δF

S
− 1) (19)

= 2K
√
S(− δF

2S
+ o((

δF
2S

)2)) (20)

≈ −2K−1 δF√
S

=
−δF√
22K−2S

(21)

where by defintion of K,
√
22K−1+iS ∈ [1, 2) hence√

22K−2+iS ∈ [1/
√
2,
√
2) hence

√
22K−2S > 1/

√
2. Finally

|f(A)− 2K
√
S| <

√
2 · δF <

√
2 · 2ℓ.

Back to our objective (15), it can be achieved by taking ℓ =
ℓout−1 when f(A) is correctly rounded (δM < 2ℓout−1). When
f(A) is faithful, a sensible choice would be to use ℓ = ℓout−2
to minimize the number of input bits to f(A), and require the
implementation of f(A) to ensure δM < 2ℓout −

√
2 · 2ℓout−2 ≈

0.64 · 2ℓout .
However, for some reason, a faithful f(A) with δM < 2ℓout

works just as well with ℓ = ℓout − 2: exhaustive testing of up
to 12 input bits (ℓin ≥ −11) for 2D norms, and up to 8 input
bits (ℓin ≥ −7) for 3D norms have shown all these operators
to be faithful despite the above error bound being 1.35 · 2ℓout

in this case. We welcome help by readers who could help us
prove this.

31

C. Architectural variants for the sum of squares
The exact sum of squares can be implemented in several

ways. Of course it may use multipliers and adders. On FPGAs,
this solution makes perfect sense for the precision domain
where this computation fits in a DSP block. Just to take two
examples, the DSPs in recent AMD FPGAs include a 18x25 or
18x27 multiplier followed by a 48-bit adder: they can compute
a sum of two (resp. 3) squares of up to 18-bit inputs in
two (resp. three) DSPs and no LUT. A DSP in the recent
Intel/Altera FPGAs can compute a sum of two products of
18x18 bits, so a sum of two squares up to 18 bits fits in a
single DSP without any logic.

All the other options consume no DSP resources, and Table I
compares them for small precisions.

The first solution is simply to tabulate the squares. For an
exact square of n-bit inputs (in our case n = 1 − ℓin) this is
a table of 2n × 2n bits. With 6-input LUTs, we expect for
n=8 such a table to consume 28−6×16 = 64 LUTs. Synthesis
tools are able to compress this in 32 LUTs, exactly half: they
exploit the symmetry in the square of a signed input. In Table I
the lines “TablesSigned” report the cost of adding the outputs
of 2 or 3 such tables.

01

−

0

X

sfix(0, ℓin)

sign(X)

|X| ufix(0, ℓin)

ufix(−1, ℓin)
L

x2

X2

ufix(−1, 2ℓin)

ufix(0, 2ℓin)

m

|X| = 1

Fig. 3: Reduction of the square
from signed to unsigned

This symmetry can also
be explicited by comput-
ing |X| and squaring this.
However in our setup, X
can represent −1, but not
1. Therefore, |X| can take
the value 1: its format must
be ufix(0, ℓin), so the size
in bits of |X| must be the
same as that of X . However,
it is possible to decompose
(as in Fig. 3) |X| = m+ L
where m is the MSB of |X|
and L consists of all the
lower bits: L ∈ [0, 1) is an
ufix(0, ℓin). Now m is only
used to represent the value
1 and in this case L = 0.
Conversely, when m = 0, then X2 = L2. Therefore, the
architecture of Fig. 3 reduces the square of an sfix(0, ℓ) to
the square of an ufix(−1, ℓ).

Removing one bit from the input reduces the size of the
x2 table size by a half, at the cost of the subtracter and
mux of Fig. 3 (on FPGAs, synthesis tools will fuse them
in a single row of 1 − ℓin LUTs) . The actual benefit (lines
“TablesUnsigned” Table I) is much less since the synthesis
tools could already exploit the corresponding symmetry.

The square tables lend themselves well to Lossless Differen-
tial Table Compression (LDTC) [11][4, p. 497], which comes
for free with FloPoCo (lines “Tables*Compressed”).

A last option is to use dedicated squarers [4, p. 443], which
have been studied quite extensively [2, 8, 26]. As the current
implementation in FloPoCo does not work for signed inputs,
the architecture of Fig. 3 is used.

TABLE I: Comparison of DSP-free variants for the sum of
squares

Table generated with the FloPoCo FixSumOfSquares operator
2D 4 bits 6 bits 8 bits 10 bits
TablesSigned 11 L / 2.12 ns 24 L / 2.17 ns 75 L / 2.63 ns 266 L / 3.22 ns
TablesUnsigned 11 L / 2.12 ns 23 L / 2.21 ns 64 L / 3.02 ns 369 L / 3.4 ns
TablesSignedCompressed 11 L / 1.87 ns 28 L / 2.41 ns 61 L / 2.96 ns 201 L / 3.72 ns
TablesUnsignedCompressed 11 L / 2.12 ns 29 L / 2.63 ns 70 L / 3.47 ns 132 L / 4.15 ns
Multipliers 11 L / 2.12 ns 24 L / 2.17 ns 110 L / 4.09 ns 180 L / 5.06 ns
Squarers (unsigned) 11 L / 2.12 ns 27 L / 2.72 ns 54 L / 3.59 ns 96 L / 4.18 ns
3D 4 bits 6 bits 8 bits 10 bits
TablesSigned 18 L / 2.17 ns 37 L / 2.24 ns 108 L / 2.82 ns 397 L / 3.53 ns
TablesUnsigned 19 L / 2.12 ns 40 L / 2.52 ns 150 L / 3.59 ns 500 L / 4.05 ns
TablesSignedCompressed 22 L / 2.31 ns 44 L / 2.85 ns 95 L / 3.46 ns 306 L / 3.92 ns
TablesUnsignedCompressed 19 L / 2.12 ns 44 L / 2.94 ns 115 L / 3.83 ns 194 L / 4.34 ns
Multipliers 16 L / 2.88 ns 38 L / 3.04 ns 171 L / 4.86 ns 278 L / 5.82 ns
Squarers (unsigned) 18 L / 2.2 ns 36 L / 3.23 ns 85 L / 4.06 ns 137 L / 4.72 ns

As each of the squarers involves a bit-array compression,
the sum of squarers could be implemented with a single bit
array compression (a concept called “merged arithmetic” [21,
23] [4, p. 151]). This is not working at publication time and
therefore not reported in Table I, but we invite our reader to
look up this option in their current FloPoCo.

As Table I shows, the squarers are the best option for area
as soon as the input width reaches 8 bits, and the tables
stay relevant a bit further if latency is the main criterion.
Asymptotically, squarers grow quadratically whereas tables
grow exponentially, therefore squarers should be used.

As an exact result is needed, approximate methods (such as
the piecewise polynomial approximations used in [18]) were
not studied.

D. Architectural variants for the square root

The current code also offers a choice for the PW
√

block.
Their impact can be observed in Table III.

The first variant is, again, a plain table, possibly com-
pressed. It is correctly rounded, which (Section II-B) enables
a saving of one bit on the parameter ℓ. Still, it is only relevant
for inputs smaller than 8 bits.

The other methods are only faithfully rounded. Piecewise
polynomial evaluation, here of degree 1 to 4 [3, 13] scale
to arbitrary sizes. For a given size, the degree controls a
balance between memory for the coefficients and DSP resource
consumption for the polynomial evaluator (here in Horner
form).

The multipartite table method [4, p. 503] is an optimization
of the piecewise linear (degree 1) approximation where the
products are distributed and tabulated. This method has known
many evolutions [5, 6, 10, 11, 15, 19, 20] and the current
code uses one of the most recent variants [11]. Below 16 bits,
it consumes fewer resources than the corresponding degree-1
approximation. At 16 bits and more, the quadratic-scaling
multipliers again win against exponential-scaling tables.

Since the architectures use an internal floating-point repre-
sentation, we also, of course, investigated the use of a variation
of a floating-point square root. FloPoCo’s square root is a basic
radix-2 SRT implementation whose iterative structure is quite
comparable to 2D CORDIC. Indeed, this operator alone has a
latency comparable to 2D CORDIC for the same precision, and
CORDIC is already slower than Naive, so this would be the
slowest variant. However, the SRT square root is also smaller

32

TABLE II: Breakout of the area and delay of the Naive version
(using the best-area variant from Table III)

8 bits 12 bits 16 bits 24 bits

X2 + Y 2 54 L / 3.59 ns 166 L / 5.39 ns 286 L / 5.82 ns 644 L / 6.38 ns
X2 + Y 2 + Z2 85 L / 4.06 ns 242 L / 6.00 ns 419 L / 6.36 ns 954 L / 6.97 ns

normalizer 37 L / 3.35 ns 70 L / 4.21 ns 82 L / 4.32 ns 146 L / 5.36 ns
PW

√
27 L / 2.79 ns 77 L / 3.34 ns 195 L / 4.37 ns 626 L / 8.62 ns
(Multipartite) (Multipartite) (degree 1) (degree 2)

right shifter 17 L / 1.81 ns 27 L / 1.83 ns 39 L / 2.11 ns 64 L / 2.12 ns

than the best implementation of PW
√

(for instance for 16
bits 188 L versus 195, for 24 bits 376 L versus 626). However,
as we will see, 2D CORDIC is much smaller than the naive
method for these sizes, and a small improvement in PW

√

will not be enough for the naive method to catch up. In short, a
naive 2D norm using SRT square root will be both slower and
larger than CORDIC. It still remains interesting to explore in
the 3D case as a low-area, long latency, multiplierless option.

E. Area and delay breakout for the naive version

Table II provides a breakout of the area and delay of
each component in the best solution for a few sizes. In the
polynomial approximators for 16 and 24 bits, the multipliers
are synthesized in logic to ease the comparison. We observe
that the main components are the sum of squares and the
square root, with very comparable costs for 2D.

III. CORDIC 2D

A. Overview

The 2D norm can be computed by the vectoring mode of
CORDIC:

x0 ∈ [0, 1]

y0 ∈ [−1, 1]

θ0 = 0

(22)

dn = +1 if yn < 0 else − 1

xn+1 = xn − 2−ndnyn

yn+1 = yn + 2−ndnxn

θn+1 = θn − dn arctan(2
−n)

(23)

Iterations converge as follows
lim
n→∞

xn = K ·
√
x2
0 + y20

lim
n→∞

yn = 0

lim
n→∞

θn = arctan (y0/x0)

(24)

where

Kn =
n∏

i=0

√
1 + 2−2i (25)

K = lim
n→∞

Kn ≈ 1.646 (26)

The corresponding architecture is shown in Fig. 4a. First,
the absolute value of X is taken, so that CORDIC iterations
converge. Subsequently, N unrolled CORDIC iterations are
performed. The hardware implementation of a CORDIC itera-
tion is depicted in Fig. 4b. Finally, XN is divided by the scale
factor KN and the architecture returns the norm in R.

CORDIC
iterations

×1/KN

X

abs

sfix(0, ℓin)

ufix(0, ℓin)

Y
sfix(0, ℓin)

XNufix(1, ℓin − g)

R

ufix(0, ℓout)

(a) Overview

sub/add add/sub∓ ±

>> n >> n

Xn Yn

Xn+1 Yn+1

Sign bit
ufix(1, ℓin − g)

sfix(3 − n, ℓin − g)

ufix(1, ℓin − g)

sfix(3 − (n + 1), ℓin − g)

(b) one iteration

Fig. 4: CORDIC 2D abstract architecture

B. Error analysis and datapath sizing

The rounding error is controlled by adding g guard bits to
the internal computation datapath. Let

• R the final value returned by the architecture.
• Xn the value of xn actually computed by the architecture

at iteration n.
The overall error of the architecture is defined as:

δtotal = ∥(x0, y0)∥2 −R (27)

= ∥(x0, y0)∥2 −
xN

KN︸ ︷︷ ︸
=δapprox

+
xN

KN
− XN

KN︸ ︷︷ ︸
=δround

+
XN

KN
−R︸ ︷︷ ︸

=δmult

(28)

a) Approximation error: Let γn be the angle between the
vector (xn, yn) and the x-axis.

δapprox = ∥(x0, y0)∥2 −
xN

KN
(29)

= ∥(x0, y0)∥2 −
KN cos(γN) ∥(x0, y0)∥2

KN
(30)

= ∥(x0, y0)∥2 · (1− cos(γN)) (31)

≤
√
2(1− cos(γN)) (32)

Moreover,

1− cos(γN) = 1− cos(γ0 − θN) (definition of θN)

≤ 1− 1 +
(γ0 − θN)2

2

≤ 1

2

(∞∑
k=N

arctan
(
2−k

))2

see [16]

≤ 1

2

(∞∑
k=N

2−k

)2

≤ 2−2N+1

Finally,

δapprox ≤
√
2(1− cos(γN)) (33)

≤ 2−2N+3/2 (34)

33

b) Rounding errors: The architecture truncates interme-
diate results, so it computes:

d̃n = +1 if Yn < 0 else − 1

Xn+1 = Xn − d̃n · ⌊2−nYn⌋ℓin−g

Yn+1 = Yn + d̃n · ⌊2−nXn⌋ℓin−g

(35)

An issue is that d̃n (the sign used in the architecture) may
differ from dn (the sign in the mathematical recurrence) due
to rounding errors leading to different signs between yn and
Yn. Of course this can only happen if yn and Yn are close
to 0. We remark that the X datapath computes in all cases
Xn+1 = Xn + ⌊2−n |Yn|⌋ℓin−g .

The rounding error for Xn+1 is defined as:

δxn+1 = Xn+1 − xn+1 (36)

= Xn − d̃n ·
⌊
2−nYn

⌋
ℓin−g

− (xn − 2−ndnyn) (37)

= Xn − xn + 2−n(dnyn − d̃nYn)

+ 2−nd̃nYn − d̃n ·
⌊
2−nYn

⌋
ℓin−g

(38)

Let us therefore define the rounding error on the Y datapath:

δyn = d̃nYn − dnyn = |yn| − |Yn| . (39)

With this definition, (38) leads to:∣∣δxn+1

∣∣ ≤ |δxn|+ 2−n |δyn|+ 2ℓin−g (40)

and for
∣∣δyn+1

∣∣:
δyn+1 = |yn+1| − |Yn+1| (41)

=
∣∣yn + 2−ndnxn

∣∣− ∣∣∣Yn + d̃n ·
⌊
2−nXn

⌋
ℓin−g

∣∣∣ (42)

=
∣∣−dn |yn|+ 2−ndnxn

∣∣
−
∣∣∣−d̃n |Yn|+ d̃n ·

⌊
2−nXn

⌋
ℓin−g

∣∣∣ (43)

=
∣∣|yn| − 2−nxn

∣∣− ∣∣∣|Yn| −
⌊
2−nXn

⌋
ℓin−g

∣∣∣ (44)

Taking the absolute value and using the reverse triangle
inequality yield:∣∣δyn+1

∣∣ = ∣∣∣∣∣|yn| − 2−nxn

∣∣− ∣∣∣|Yn| −
⌊
2−nXn

⌋
ℓin−g

∣∣∣∣∣∣ (45)

≤
∣∣∣|yn| − 2−nxn − |Yn|+

⌊
2−nXn

⌋
ℓin−g

∣∣∣ (46)

≤ ||yn| − |Yn||+
∣∣2−nXn − 2−nxn

∣∣
+
∣∣∣⌊2−nXn

⌋
ℓin−g

− 2−nXn

∣∣∣ (47)

≤ |δyn|+ 2−n |δxn|+ 2ℓin−g (48)

Let δxn and δyn be, respectively, error bounds on δxn and δyn:
δx0 = δy0 = 0

δxn+1 = δxn + 2−nδyn + 2ℓin−g

δyn+1 = δyn + 2−nδxn + 2ℓin−g

(49)

By induction, ∀n δxn = δyn = 2ℓin−g · αn where:{
α0 = 0

αn+1 = αn(1 + 2−n) + 1
. (50)

It is easier to determine the number of guard bits required with
this expression as g does not appear in the definition of αn.

c) Multiplication rounding errors: The multiplication by
1/KN uses FixRealKCM, one of the constant multipliers
from FloPoCo. It can be configured with an ulp error bound
parameter t ∈

]
1
2 , 1
]

so that the faithful architecture obeys

|δmult| < t · 2ℓout . (51)

d) Determining the parameters of the architecture: The
architectural parameters are N , the number of iterations, g, the
number of guard bits, and t above. Our objective is to ensure
|δtotal| < 2ℓout at the least possible hardware cost. As

|δtotal| = |δapprox + δround + δmult| (52)
≤ |δapprox|+ |δround|+ |δmult| (53)

a sensible set of constraints (among an infinity – determining
the actual optimal is beyond the scope of this work) is:

|δapprox| <
1

8
2ℓout (54)

|δround| <
1

8
2ℓout (55)

|δmult| <
3

4
2ℓout (56)

From equations (54) and (34), N must satisfy:

2−2N+3/2 <
1

8
2ℓout (57)

hence the smallest value of N verifying this inequality is

N =

⌈
−ℓout + 9/2

2

⌉
. (58)

The recurrence from (49) is then evaluated up to this N . The
rounding errors verify:

|δround| =
1

KN
|xN −XN | =

1

KN
δxN (59)

≤ 1

KN
δxN =

2ℓin−g

KN
· αN (60)

To satisfy inequation (55), the following constraint holds on g

2ℓin−g

KN
· αN <

1

8
2ℓout (61)

thus, the smallest value of g that ensures last-bit accuracy is

g = ⌈log2 (αN)− log2 (KN)⌉+ ℓin − ℓout + 3 . (62)

Finally, from (56) and (51), the value of t in (56) should
obviously be

t =
3

4
. (63)

e) Sizing of the Yn datapath: From the analysis, the Xn

number format will be ufix(1, ℓin − g). For the Yn datapath,
notice that

|yn| = Kn |sin(γn)| ∥(x0, y0)∥2 (64)
≤ Kn |γn| ∥(x0, y0)∥2 (65)

≤ 2 · 2−n+1 · 21/2 (66)

≤ 2−n+3 (67)

thus the number format will be sfix(3− n, ℓin − g) for n ≥ 3.

34

TABLE III: Comparison of CORDIC and the Naive method variants
Table generated with the FloPoCo Fix2DNorm and Fix3DNorm operators

2D 4 bits 6 bits 8 bits 12 bits 16 bits 24 bits
CORDIC 55 L / 6.46 ns 87 L / 8.4 ns 141 L / 10.88 ns 268 L / 14.29 ns 415 L / 16.62 ns 813 L / 22.21 ns
NaivePlainTable 34 L / 4.2 ns 76 L / 5.88 ns 178 L / 8.18 ns 1000 L / 12.22 ns 14898 L / 13.69 ns N/A
NaiveMultiPartite 31 L / 4.39 ns 93 L / 6.66 ns 130 L / 8.74 ns 324 L / 12.88 ns 677 L / 14.33 ns 5926 L / 17.62 ns
NaivePiecewiseHorner1 48 L / 5.8 ns 90 L / 8.27 ns 161 L / 9.72 ns 353 L / 13.55 ns 602 L / 14.58 ns 2441 L / 18.83 ns
NaivePiecewiseHorner2 51 L / 6.12 ns 137 L / 10.27 ns 228 L / 11.55 ns 471 L / 16.32 ns 757 L / 17.77 ns 1479 L / 20.82 ns
NaivePiecewiseHorner3 N/A 151 L / 9.94 ns 280 L / 13.26 ns N/A 850 L / 20.76 ns 1641 L / 23.56 ns
3D 4 bits 6 bits 8 bits 12 bits 16 bits 24 bits
CORDIC 906 L / 12.99 ns N / A 1880 L / 23.55 ns 2786 L / 30.25 ns 3951 L / 36.82 ns N / A
NaivePlainTable 38 L / 4.3 ns 103 L / 6.29 ns 200 L / 8.61 ns 1066 L / 12.77 ns 15038 L / 14.17 ns N/A
NaiveMultiPartite 38 L / 4.3 ns 89 L / 8.03 ns 150 L / 9.09 ns 408 L / 13.3 ns 817 L / 14.81 ns 6236 L / 18.46 ns
NaivePiecewiseHorner1 55 L / 5.85 ns 102 L / 8.58 ns 185 L / 10.02 ns 433 L / 14.08 ns 741 L / 15.1 ns 2749 L / 19.68 ns
NaivePiecewiseHorner2 60 L / 6.33 ns 142 L / 10.49 ns 250 L / 11.98 ns 550 L / 16.69 ns 896 L / 18.19 ns 1777 L / 21.54 ns
NaivePiecewiseHorner3 N/A N/A 300 L / 13.69 ns N/A 991 L / 21.16 ns 1915 L / 24.52 ns

IV. CORDIC 3D

CORDIC can be generalized to d dimensions [9]. This
section focuses on d = 3. As in CORDIC 2D, the idea in
CORDIC 3D is to align the initial vector with the (1, 0, 0)
axis. To do so, the vectoring operation is decomposed into
elementary rotations around two possible axes. The iterative
equations are controlled by two variables that encode the axis
and the rotation direction.

x0 ∈ [−1, 1[

y0 ∈ [−1, 1[

z0 ∈ [−1, 1[

(68)

δn = +1 if xnyn ≤ 0 else − 1

λn = +1 if xnzn ≤ 0 else − 1

xn+1 = xn − 2−2n+1xn + δn2
−n+1yn + λn2

−n+1zn

yn+1 = yn − δn2
−n+1xn − δnλn2

−2n+1zn

zn+1 = zn − λn2
−n+1xn − δnλn2

−2n+1yn
(69)

We first investigated the potential of this architecture for
4, 8, 12, and 16 bits. For these input sizes, we manually
determined by trial and error the smallest possible number
of iterations and guard bits ensuring a faithful operator (based
on exhaustive tests for small sizes and one million random test
cases for larger sizes). Operators with these parameters were
then synthesized, and this is the data we report in Table III.
As these results leave no hope that this approach could be
competitive with the naive approach, we did not feel compelled
to provide an error analysis or investigate further optimization.

Note that even the simpler solution of a sequence of two
rotations (chaining two CORDIC 2D) will be much cheaper
than CORDIC 3D (even accounting for the fact that extra
accuracy is needed in the intermediate result). However it will
have longer latency and more area than the naive approach,
so we didn’t investigate it either.

V. RESULTS AND CONCLUSIONS

Table III shows the area/latency trade-off of the 2D and 3D
norm variants implemented here. The short conclusion is that
2D CORDIC is smaller but slower than Naive 2D, while in
3D the naive approach is the one to use.

The naive variants can trade LUTs for DSP blocks. It makes
sense at 16 bits and above, for instance the 286 L / 5.82 ns
for the sum of squares in Table II can be replaced with 2 DSP
blocks and 0 LUTs / 4.47ns. Due to lack of space we do not
explore this trade-off in detail.

These operators also work for different input and output
sizes, since the error analysis includes these cases. Table IV
illustrates the overhead of increasing the accuracy of the norm
for a fixed input precision. This may be useful when the norm
is taken directly on the inputs of a complex datapath that needs
to work with internal higher precision.

VI. FUTURE WORK

Future work includes an extension to floating-point norms.
For the naive version, the cost will probably be comparable: we
will save the normalizer and final shifter component (the latter
being replaced with a 1-bit normalization and rounding unit).
However, the input squares will have to be shifted based on to
their exponent differences before being added. Alternatively,
the inputs can be converted to a common fixed-point format
before entering one of the proposed fixed-point architectures.
In both cases the truncation in this initial shift is a new source
of error, requiring an update of the error analysis.

A fixed-point in, floating-point out norm would probably
be a cheap variant of the proposed naive architecture, again
just replacing the final shifter with a simpler rounding unit.
A reciprocal norm (evaluating 1/

√
X2 + Y 2 + Z2) is another

simple variant (essentially changing the function f) but it
mostly makes sense with a floating-point output.

There are many more methods to investigate, including
higher-radix CORDIC [1, 24]. These are expected to have
lower latency but higher area than CORDIC due to the need for
prescaling, additional look-up tables to read the microrotation
angles, and the non-constant scale factor – the combined
cost of the higher-radix micro-rotations themselves should

TABLE IV: Norms with 8-bit inputs and wider output

output width 8 bits 12 bits 16 bits
2D CORDIC 141 L / 10.88 ns 216 L / 13.28 ns 311 L / 15.65 ns
2D Naive 130 L / 8.74 ns 188 L / 9.54 ns 363 L / 9.94 ns
3D Naive 150 L / 9.09 ns 211 L / 9.98 ns 385 L / 10.38 ns

35

be comparable. Due to this overhead they probably become
relevant only for precisions higher than the ones targeted here.

We have focused on norms, but another advantage of
2D CORDIC is that a single iteration can perform a full
polar/cartesian coordinate conversion (both ways). This useful
operator should also be explored.

REFERENCES

[1] Elisardo Antelo, Tomas Lang, and Javier D. Bruguera.
“Very-high radix circular CORDIC: Vectoring and uni-
fied rotation/vectoring”. In: IEEE Transactions on Com-
puters 49.7 (2000), pp. 727–739.

[2] Andreas Böttcher, Martin Kumm, and Florent de
Dinechin. “Resource Optimal Squarers for FPGAs”.
In: Field-Programmable Logic and Applications (FPL).
IEEE, Aug. 2022.

[3] Florent de Dinechin, Mioara Joldes, Bogdan Pasca, and
Guillaume Revy. “Multiplicative square root algorithms
for FPGAs”. In: Field-Programmable Logic and Appli-
cations (FPL). 2010, pp. 574–577.

[4] Florent de Dinechin and Martin Kumm. Application-
Specific Arithmetic. Springer, 2024.

[5] Florent de Dinechin and Arnaud Tisserand. “Multipar-
tite Table Methods”. In: IEEE Transactions on Comput-
ers 54.3 (2005), pp. 319–330.

[6] Debjit Das Sarma and David W. Matula. “Faithful
Bipartite ROM Reciprocal Tables”. In: 12th Symposium
on Computer Arithmetic. Ed. by S. Knowles and W.H.
McAllister. IEEE, 1995, pp. 17–28.

[7] Miloš D. Ercegovac and Tomás Lang. Digital Arith-
metic. Morgan Kaufmann, 2004.

[8] Shuli Gao, Noureddine Chabini, Dhamin Al-Khalili,
and J M Pierre Langlois. “FPGA-Based Efficient Design
Approaches for Large Size Two’s Complement Squar-
ers”. In: Journal of Signal Processing Systems 58.1
(2008), pp. 3–15.

[9] Shen-Fu Hsiao and J.-M. Delosme. “Householder
CORDIC algorithms”. In: IEEE Transactions on Com-
puters 44.8 (Aug. 1995), pp. 990–1001.

[10] Shen-Fu Hsiao, Chia-Sheng Wen, Yi-Hau Chen, and
Kuei-Chun Huang. “Hierarchical Multipartite Func-
tion Evaluation”. In: Transactions on Computers 66.1
(2017), pp. 89–99.

[11] Shen-Fu Hsiao, Po-Han Wu, Chia-Sheng Wen, and
Pramod Kumar Meher. “Table Size Reduction Methods
for Faithfully Rounded Lookup-Table-Based Multiplier-
less Function Evaluation”. In: Transactions on Circuits
and Systems II 62.5 (2015), pp. 466–470.

[12] Zhijun Huang and Milos D Ercegovac. “FPGA imple-
mentation of pipelined on-line scheme for 3-D vector
normalization”. In: Field-Programmable Custom Com-
puting Machines (FCCM). IEEE, 2001, pp. 61–70.

[13] Claude-Pierre Jeannerod, Hervé Knochel, Christophe
Monat, and Guillaume Revy. “Computing floating-point
square roots via bivariate polynomial evaluation”. In:

IEEE Transactions on Computers 60.2 (Feb. 2011),
pp. 214–227.

[14] Pramod K. Meher, Javier Valls, Tso-Bing Juang,
K. Sridharan, and Koushik Maharatna. “50 Years
of CORDIC: Algorithms, Architectures, and Applica-
tions”. In: IEEE Transactions on Circuits and Systems
I : Regular papers 56.9 (2009), pp. 1893–1907.

[15] Jean-Michel Muller. “A Few Results on Table-Based
Methods”. In: Reliable Computing 5.3 (1999), pp. 279–
288.

[16] Jean-Michel Muller. Elementary functions, algorithms
and implementation, 3rd Edition. Birkhaüser, 2016.

[17] Shinobu Nagayama, Tsutomu Sasao, and Jon T Butler.
“A systematic design method for two-variable numeric
function generators using multiple-valued decision dia-
grams”. In: IEICE TRANSACTIONS on Information and
Systems 93.8 (2010), pp. 2059–2067.

[18] J. A. Piñeiro, J. D. Bruguera, and J.-M. Muller. “Faithful
Powering Computation Using Table Look-Up and a
Fused Accumulation Tree”. In: 15th Symposium on
Computer Arithmetic. IEEE, 2001, pp. 40–47.

[19] James E. Stine and Michael J. Schulte. “The Symmetric
Table Addition Method for Accurate Function Approx-
imation”. In: Journal of VLSI Signal Processing 21.2
(1999), pp. 167–177.

[20] David A. Sunderland, Roger A. Strauch, Steven S.
Wharfield, Henry T. Peterson, and Christopher R. Role.
“CMOS/SOS Frequency Synthesizer LSI Circuit for
Spread Spectrum Communications”. In: IEEE Journal
of Solid-State Circuits 19.4 (1984), pp. 497–506.

[21] Earl E. Swartzlander. “Merged Arithmetic”. In: IEEE
Transactions on Computers C-29.10 (1980), pp. 946–
950.

[22] Naofumi Takagi and Seiji Kuwahara. “A VLSI Al-
gorithm for Computing the Euclidean Norm of a 3D
Vector”. In: IEEE Transactions on Computers 49.10
(2000), pp. 1074–1082.

[23] Ajay K. Verma, Philip Brisk, and Paolo Ienne. “Data-
Flow Transformations to Maximize the Use of Carry-
Save Representation in Arithmetic Circuits”. In: IEEE
Transactions on Computer-Aided Design of Integrated
Circuits and Systems 27.10 (2008), pp. 1761–1774.

[24] Julio Villalba, Emilio L Zapata, Elisardo Antelo, and
Javier D. Bruguera. “Radix-4 vectoring CORDIC algo-
rithm and architectures”. In: Journal of VLSI signal pro-
cessing systems for signal, image and video technology
19 (1998), pp. 127–147.

[25] Jack Volder. “The CORDIC Computing Technique”.
In: IRE Transactions on Electronic Computers EC-8.3
(1959), pp. 330–334.

[26] Simin Xu, Suhaib A. Fahmy, and Ian V. Mcloughlin.
“Efficient Large Integer Squarers on FPGA”. In: Field-
Programmable Custom Computing Machines. 2013,
pp. 198–201.

36

