
VEXP: A Low-Cost RISC-V ISA Extension for
Accelerated Softmax Computation in Transformers

Run Wang∗, Gamze Islamoglu∗, Andrea Belano†, Viviane Potocnik∗
Francesco Conti†, Angelo Garofalo†, Luca Benini∗†

∗IIS, ETH Zurich, Switzerland
runwang@ethz.ch, {gislamoglu, vivianep, lbenini}@iis.ee.ethz.ch

†DEI, University of Bologna, Italy
{andrea.belano2, f.conti, angelo.garofalo}@unibo.it

Abstract—While Transformers are dominated by Floating-
Point (FP) Matrix-Multiplications, their aggressive accelera-
tion through dedicated hardware or many-core programmable
systems has shifted the performance bottleneck to non-linear
functions like Softmax. Accelerating Softmax is challenging due
to its non-pointwise, non-linear nature, with exponentiation as
the most demanding step. To address this, we design a custom
arithmetic block for Bfloat16 exponentiation leveraging a novel
approximation algorithm based on Schraudolph’s method, and
we integrate it into the Floating-Point Unit (FPU) of the RISC-V
cores [1] of a compute cluster, through custom Instruction Set
Architecture (ISA) extensions, with a negligible area overhead of
1 %. By optimizing the software kernels to leverage the extension,
we execute Softmax with 162.7× less latency and 74.3× less
energy compared to the baseline cluster, achieving an 8.2×
performance improvement and 4.1× higher energy efficiency for
the FlashAttention-2 kernel in GPT-2 configuration. Moreover,
the proposed approach enables a multi-cluster system to effi-
ciently execute end-to-end inference of pre-trained Transformer
models, such as GPT-2, GPT-3 and ViT, achieving up to 5.8× and
3.6× reduction in latency and energy consumption, respectively,
without requiring re-training and with negligible accuracy loss.

Index Terms—LLM, transformer, flashattention, softmax, neu-
ral network acceleration, exponential function, RISC-V

I. INTRODUCTION

Transformer-based models such as the GPT family [2] and
the LLaMa family [3], have emerged as a cornerstone of ma-
chine learning, demonstrating state-of-the-art performance in
diverse domains, including natural language processing (NLP),
computer vision, and audio processing. These models leverage
pre-trained representations on large-scale unlabeled datasets,
enabling remarkable accuracy improvements in fine-tuned
downstream tasks such as sentence classification and question
answering. At the core of their success is the Transformer
architecture [4], which utilizes the self-attention mechanism
to model complex relationships within input sequences.

Despite the interest in deploying Transformer-based models
on mobile and edge devices, their substantial computational
and memory requirements present challenges in meeting the
resource and energy constraints of these devices. In encoders
and the prefill stage of decoders, the computational complexity
of attention layers scales quadratically with the input sequence
length, leading to memory and computational overheads that
necessitate mitigation by means of dedicated acceleration.
Although many architectures utilize General Matrix-Matrix

This work was supported by the NeuroSoC project, funded under the
European Union’s Horizon Europe research and innovation programme (Grant
Agreement No. 101070634).

Base Optim
128

Base Optim
256

Base Optim
512

Base Optim
1024

Base Optim
2048

Sequence Length

0

20

40

60

80

100

R
un

tim
e

[%
]

GPT-3 Forward Pass Runtime (FP16)
FlashAttention Softmax Linear Others

Fig. 1. Runtime breakdown for GPT-3 on a RISC-V multi-cluster platform [5].
For each sequence length, the left bar shows unoptimized GEMM results,
while the right bar reflects optimized GEMM results.

Multiplication (GEMM) acceleration to alleviate the com-
putational burden, performance bottlenecks are increasingly
shifting toward non-linear operations, especially the Softmax
function within the attention layers.

Accelerating Softmax poses challenges due to its non-linear,
non-pointwise nature and its reliance on a transcendental
function, i.e. the exponentiation. The low arithmetic intensity
of Softmax constrains parallelism and processing efficiency, a
limitation that becomes more pronounced as GEMM latency
decreases with acceleration. For example, the runtime break-
down for BERT on Volta GPU from Steven et al. [6] shows
that Softmax contributes more than 30% for long sequences.
Moreover, as shown in Figure 1, deployment of GPT3-XL on
the RISC-V multi-cluster platform [5] reveals that Softmax
contributes to 30% of the runtime prior to GEMM operator
acceleration, and 70% afterwards for sequence length of 2048.

The use of large accelerators is justified for GEMMs, which
constitute the majority of a Transformer’s workload in terms of
number of operations. However, allocating considerable silicon
area for Softmax acceleration is sub-optimal, as it represents
only a small portion of the overall computational workload.
Hence, addressing these challenges necessitates innovative
solutions that optimize the Softmax function with minimal area
costs while preserving accuracy.

Existing software-level optimizations [7] often fall short
of delivering the accuracy, performance and efficiency im-
provements necessary for large-scale or low-power deploy-
ments. Although hardware accelerators improve performance
and energy efficiency, they typically lack flexibility due to
their dependence on fixed-function datapath, and often lead

37

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00016

to considerable integration area overhead in existing systems.
Moreover, achieving accuracy parity often necessitates re-
training [6] [8]—a technique that is undesirable, and often
impractical for Large Language Models (LLMs).

In contrast, the growing adoption of the open and extensi-
ble RISC-V ISA to design domain-specialized programmable
compute units offers a promising approach for addressing
these limitations. In this work, we identify the exponential
function as the primary computational bottleneck in Softmax
computation, and we accelerate it on RISC-V-based systems,
with low hardware overhead, through specialized ISA exten-
sions. We demonstrate significant performance and energy
efficiency gains in accelerating Transformer inference at native
precision (Bfloat16), without compromising model accuracy,
and without jeopardizing area and power consumption of the
compute system. The contributions of this paper are:

• We design a custom arithmetic block for accelerating the
exponential function on Brain Floating-Point (Bfloat16
or BF16) data, integrate it with ultra-low overhead in the
FPU of programmable RISC-V processors of an octa-core
compute cluster, and extend their ISA with a custom EXP
instruction;

• We implement the cluster using GlobalFoundries 12 nm
technology down to silicon-ready design and demonstrate
that our solution incurs only a 1.0% area overhead at the
cluster level and a negligible power overhead of 1.8% on
workload with peak FPU utilization that do not exploit
EXP, while the energy required to execute exponential
operation is reduced by two orders of magnitude;

• By exploiting the proposed ISA extensions, we optimize
the execution of Softmax in software, demonstrating
162.7× latency reduction and 74.3× less energy con-
sumption compared to a non-optimized kernel on the
baseline cluster and achieving 1.4× better area efficiency
and 7.4× lower power consumption compared to state-
of-the-art Softmax accelerators, as detailed in Section VI.
Moreover, we integrate our fully optimized Softmax
kernel into FlashAttention-2, showing 8.2× performance
and 4.1× energy efficiency improvements;

• We scale up the proposed cluster to a 16-cluster system
to evaluate the acceleration capabilities of our solution
on end-to-end execution of pre-trained, un-tuned Trans-
formers. We benchmark models such as GPT-2, GPT-3,
and Vision Transformers (ViT), achieving up to 5.8×
latency reduction and up to 3.6× less energy consumption
compared to a baseline system without the proposed
optimizations. Notably, these gains are achieved without
re-training and with an accuracy loss of less than 0.1%.

II. RELATED WORK

Optimization techniques for Softmax can be broadly di-
vided into two categories: workflow scheduling and com-
putational approximations. Workflow scheduling techniques
such as FlashAttention [9] and FlashAttention-2 [10] enhance
data reuse through a tiling technique, thereby improving both
memory efficiency and parallelism. While these techniques
do not directly target optimizing the Softmax computation
kernel, they are complementary to the kind of optimizations

L0 $I L0 $I

FPU FPU DMA

RV 0 RV 7 RV 8

L1 $I

M
U

L
/D

IV

Shared L1 Scratchpad Crossbar

B0 B8 B16 B31

512b Crossbar

64
b

C
ro

ss
ba

r
Pe

ri
ph

er
al

s

Snitch
Core

LSU

L0 I$

FREP
CTRL

F
P

U
 S

eq

FPU

Regs

SSR0
SSR1
SSR2

Snitch CC

F
P

U
 S

ub
sy

st
em

cfg

instr. offload

LSU

L0 $I

Fig. 2. Architecture of the RISC-V compute cluster with ISA extension FREP
and SSR [1].

explored in this work, which focus specifically on improving
the efficiency of the computation kernel itself.

Computational approximations target the core Softmax op-
erations: exponentiation and division. Full-precision exponen-
tiation units based on iterative methods like Taylor series [11]
and Coordinate Rotation Digital Computer (CORDIC) [12]
offer accuracy but suffer from slow convergence, hence, long
latency and high implementation costs. Lookup Table (LUT)-
based methods [13] pre-compute values for faster computation
but face scalability challenges due to high memory usage.
Piecewise linear approximations [14] balance accuracy and
efficiency but require input preprocessing, which can introduce
additional overhead. Schraudolph’s method [15] achieves fast
exponential performance but is limited by accuracy. Division,
a key component of Softmax normalization, further adds com-
plexity. Methods like log-sum-exp [16] eliminate the need for
division at the cost of logarithm computations. Alternatively, a
single division can compute the reciprocal of the denominator,
which is then multiplied by all values for normalization [6].

Recently, hardware accelerators for Softmax have emerged,
particularly for Transformers. Most accelerators [6], [16]–
[19] rely on fixed-point approximations for exponentiation
and division, enabling efficient circuitry but complicating
precision handling due to conversions from floating-point or
integer formats. Methods like [20], [21] overcome this by
operating directly on integer or floating-point formats without
fine-tuning, while [6], [22] are tailored specifically for 8-bit
quantized networks but rely on fine-tuning.

To achieve a better balance between flexibility and ef-
ficiency, we design a custom arithmetic block for the fast
execution of the exponential function on BF16 data, a widely
adopted precision for Transformers [23], based on an en-
hanced version of Schraudolph’s method. We integrate it into
RISC-V processors within a parallel compute cluster through
lightweight custom ISA extensions, providing a detailed de-
scription and evaluation of the proposed approach, including
accuracy and design tradeoffs, while demonstrating significant
acceleration speed-ups, minimal implementation costs, and
negligible accuracy loss. As highlighted in Section VI, our
approach offers superior efficiency and flexibility compared
to state-of-the-art Softmax accelerators, enabling end-to-end
execution of Transformers without the need for fine-tuning.

III. BACKGROUND

A. Snitch Cluster
Figure 2 illustrates the architecture of the Snitch cluster [1]

that we use as a baseline. The Snitch cluster is an energy-

38

efficient compute architecture designed for high-performance
workloads. It integrates eight RISC-V RV32IMAFD cores,
each paired with a tightly coupled 64-bit Single Instruction
Multiple Data (SIMD)-capable FPU supporting a wide range
of data formats (FP64 to FP8, including BF16) and a private
L0 instruction cache.

A 128 KiB, 32-banked scratchpad memory (SPM) is shared
across the cluster, connected via a single-cycle logarithmic
interconnect that delivers high-bandwidth, low-latency data
access. A dedicated direct memory access (DMA) control core
facilitates asynchronous data transfers between the SPM and
external memory systems (e.g., HBM2E or other clusters),
achieving bandwidths of up to 512 bit/cycle. To ensure efficient
data movement, the hierarchical interconnect incorporates a
512-bit wide crossbar for L1 instruction cache and data access
and a 64-bit crossbar for peripheral communication.

The architecture also supports advanced ISA extensions,
including FREP (Floating-Point Repetition) [1] for hardware
loops and SSR (Stream Semantic Register) [24] for managing
data access with minimal software overhead. The FREP in-
struction configures the FPU sequencer to automatically repeat
and autonomously issue the next n floating-point instructions
to the FPU. The SSR extension allows the configuration of
up to three memory streams with affine address patterns,
effectively eliminating explicit memory operations.

B. FlashAttention

A Transformer consists of multiple blocks, each containing
a multi-head attention (MHA) module and a feed-forward
module. In MHA, token vectors are projected through query
(Q), key (K), and value (V) matrices, with attention computed
as Softmax((QK⊤)/

√
dk)V . FlashAttention [9] optimizes this

computation by dividing Q, K, and V into blocks that can be
efficiently processed in fast SRAM memory, thereby reducing
costly HBM accesses. FlashAttention-2 [10] further enhances
performance through optimized memory layouts and aggres-
sive operator fusion.

For numerical stability, we adopt the Softmax function with
maximum subtraction:

Softmax(xi) =
exp(xi −max(x))∑
j exp(xj −max(x))

, which requires storing the complete attention matrix and
performing row-wise operations. To address this limitation,
FlashAttention introduces partial Softmax, which processes
blocks incrementally while maintaining running statistics
(maximum values and exponential sums). For each new block,
these statistics are updated and used to compute partial results,
enabling numerically equivalence to standard Softmax while
significantly reducing memory overhead. This online compu-
tation approach not only ensures numerical stability but also
eliminates the need to materialize the full attention matrix in
memory.

C. Execution Model on Snitch Cluster

Baseline Softmax: The baseline kernel is written in C
without leveraging Snitch’s extended ISA (FREP, SSR and
SIMD). Data is transferred via DMA from HBM to the local
SPM with double buffering to mask data marshalling latency

while the eight Snitch cores process sequences in parallel. The
division in Softmax is performed by the FPU’s division block,
and the exponential function is based on math.h library
and uses a piecewise polynomial approximation method with
software LUTs.

Baseline FlashAttention-2: Following the approach in [5],
we adapt FlashAttention-2 to the Snitch cluster architecture
with an optimized tiling strategy. The implementation first
loads a Q tile to SPM via DMA, then iteratively transfers
and processes corresponding K and V tiles. To maximize
throughput, we employ double buffering for efficient overlap
between memory transfers and computation. The tile size is
optimized based on SPM capacity under double buffering
constraints. Within each tile, both GEMM and partial Softmax
computations are parallelized across the cluster cores. The
partial Softmax computation is parallelized by having the eight
cluster cores simultaneously compute multiple row statistics.
The GEMM implementation leverages Snitch’s specialized
instruction-level optimizations as detailed in [5], which serves
as the foundation for all GEMM operations in this work.

D. Exponential Approximation Algorithm
For efficient exponential computation, we adopt Schrau-

dolph’s method [15], which exploits the memory arrangement
of floating-point numbers to approximate ex with few basic
operations. The input x is scaled to the base-2 domain as x′ =
x/ ln(2), then decomposed into integer and fractional parts:
int(x′) = ⌊x′⌋ and frac(x′) = x′ − ⌊x′⌋. The approximation
is reconstructed as exp(x) ≈ 2int(x

′) · (1 + frac(x′)). Based
on the method proposed by Belano et al. [25], to enhance
accuracy, the fractional term (1 + frac(x′)) is replaced with a
polynomial P (frac(x′)), yielding:

exp(x) ≈ 2int(x
′) · (1 + P (frac(x′))) . (1)

To better approximate 2frac(x), the interval [0, 1) is split into
two equal-length partitions, determined by the most significant
bit of the mantissa. For each partition, a polynomial in the form
ax(x+ b) is applied:

P (x) =

{
αx (x+ γ1) , x ∈ [0, 0.5),

not (β not(x) · (x+ γ2)) , x ∈ [0.5, 1).
(2)

Here, α, β, γ1, and γ2 are optimized for minimal error,
with 1 − x approximated by not(x) for hardware efficiency.
Adjustments to γ1 and γ2 account for fixed-point arithmetic
constraints. Parameters α = 0.21875, β = 0.4375, γ1 =
3.296875 and γ2 = 2.171875 are derived via a heuristic Monte
Carlo optimization with 106 trials by Belano et al. [25] to
minimize the error between the true exponential function and
its approximation.

IV. METHODS

A. EXP Custom Arithmetic Block
Figure 3c shows the proposed arithmetic block to effi-

ciently compute the approximation of exponential function on
Bfloat16 data. This block is structured around the algorithm
introduced in Section III-D and consists of two cascaded stages
as described above: exps(x), which implements the Schrau-
dolph’s method in hardware, and the subsequent P (x), which
performs the mantissa correction for improved precision.

39

╳ << +

R
O
U
N
D

+

133

1

0
╳

╳

+

α β

0

1

0

1

01

10

C
O

M
P

D
IV

SQ
R

T

FM
A

C
AS

T

SD
O

TP

Output Arbitration
64

EX
P

Operands Distribution Operands Distribution
16

Output Arbitration
16 16 16 16

Ex
pU

ni
t L

an
e0

Ex
pU

ni
t L

an
e1

Ex
pU

ni
t L

an
e3

Ex
pU

ni
t L

an
e2

16 16 16

64

64

64 6464
16

16

(BF16 SIMD Vector)

Fig. 3. Block diagram of (a) the extended FPU, (b) the ExpOpGroup, (c) the
ExpUnit, (d) the exps(x) stage, and (e) the P (x) stage.

At the input of the exps(x) stage (shown in Figure 3d), the
data in Bfloat16 format is decomposed into its sign, exponent,
and mantissa bits, with the implicit leading 1 appended to the
latter. Next, the mantissa is multiplied by the precomputed
constant (log2 e), and the result of this multiplication is then
shifted by an amount equal to the difference between the
exponent of the argument and the maximum exponent after
which the exponential function is guaranteed to overflow (133
in the case of BFloat16 numbers). Then, the first 15 bits of
the shifted mantissa are selected and appropriately rounded
to maintain precision, and finally, if no overflow occurs, the
result is obtained by appending a leading zero (the sign bit
of the result) to the rounded mantissa and adding the bias to
the new exponent. If an overflow or infinity is detected, the
output is assigned to either ∞ or 0, depending on whether
the argument is positive or negative. For subnormal values,
the data is flushed to zero following BFloat16 simplifications
relative to IEEE-754 behaviour [23].

The second stage of the exponential computation, P (x),
corrects the mantissa component of the approximation. First,
the MSB of the mantissa determines whether the input falls
within [0, 0.5) or [0.5, 1), selecting the appropriate polynomial
branch. In the first branch, corresponding to x ∈ [0, 0.5),
the polynomial αx(x + γ1) is evaluated directly using fixed-
point arithmetic. For x ∈ [0.5, 1), the computation proceeds
with not(β not(x) · (x+ γ2)), where the bitwise complement
operation approximates the evaluation of 1− x.

Finally, the output of the EXP block is obtained by con-
catenating the corrected mantissa from the P (x) stage with
the sign and exponent fields from the exps(x) stage.

B. Snitch ISA Extension and Microarchitecture
To exploit the fast exponentiation of Bfloat16 data enabled

by the EXP block described in Section IV-A while preserving
software programmability, we integrate the arithmetic block
into an open-source, modular, energy-efficient multiformat
FPU [26] for RISC-V processors. The target FPU already
supports a wide range of floating-point operations, which
are organized into specific multi-format modules that can be
enabled at design-time through parameters. For our evaluation,
it integrates FMA (fused multiply-add), DIVSQRT (division

TABLE I
SNITCH RISC-V ENCODINGS FOR FEXP AND VFEXP

Format Encoding (32-bit)

FEXP rd, rs1 001111100000{rs1}000{rd}1010011
VFEXP rd, rs1 101111100000{rs1}000{rd}1010011

and square root), COMP (comparison), CAST (conversion),
and SDOTP (dot product) modules. We extend it with a new
dedicated single-format module, namely ExpOpGroup.

The new operation group takes as input a single N -bit SIMD
vector containing Bfloat16 elements and produces a single N -
bit SIMD output vector, as illustrated in Figure 3b. Depending
on the data-width of the FPU, which is configurable at design
time, the ExpOpGroup integrates k = N -bit/16-bit ExpUnit
lanes. This is preceded by additional logic that segments the
input SIMD vector into k 16-bit elements and distributes
them to the ExpUnits. To meet the timing requirements of the
processor that integrates the FPU enhanced with the proposed
block, the ExpUnit includes a configurable number of pipeline
stages, which can be utilized for retiming.

Furthermore, the extended FPU is integrated into the micro-
architecture of the Snitch cores of the parallel compute cluster
introduced in Section III-A. Since the Snitch core supports
double-precision instructions, the FP register file contains 32
64-bit wide registers and its datapath is 64-bit wide. At the
interface, the FPU accepts three 64-bit input operands and
produces one 64-bit output per cycle. This configuration allows
the packing of four Bfloat16 operands into a single SIMD 64-
bit register. As illustrated in Figure 3c, the ExpOpGroup is pa-
rameterized with four ExpUnit lanes, each equipped with one
level of pipeline registers to streamline processing. This design
allows for the completion of a single exponentiation operation
in two cycles, while still permitting back-to-back operations
without stalling, thereby maintaining a peak throughput of four
Bfloat16 exponentiation operations per cycle.

To enable this operation in software, we extend the Snitch’s
RISC-V ISA with two domain-specific instructions, namely
FEXP and VFEXP. The first instruction is designed for scalar
Bfloat16 operations, activating only one ExpUnit in the micro-
architecture, while VFEXP performs a packed-SIMD expo-
nential computation that fully utilizes the underlying micro-
architecture’s capabilities. Both instructions execute with a
latency of two clock cycles in the Snitch core. As shown in
Table I, the instruction formats use rd (destination register)
and rs1 (source register) as 5-bit fields to address the FPU’s
32×64 register file, with the most significant bit of the entire
instruction distinguishing between scalar and packed-SIMD
operations. The Snitch core’s decoder and FPU subsystem are
updated to support these instructions and seamlessly activate
the ExpOpGroup in the FPU.

C. Optimized Softmax Kernel

To speed up the execution of the Softmax function on
the enhanced Snitch cluster, we develop optimized software
routines that exploit the underlying ISA of the Snitch cores,
including the designed VFEXP instruction. Since the maximum
value is required for the exponentiation step and must be
computed by looping over each row of the resulting QKT

40

NORM Loop for N:
flh ft1, 0(a2)
fdiv.h ft2, ft1, sum
fsh ft2, 0(a2)
addi a2, a2, 2
addi a3, a3, -1
bnez a3, loop

for(i=0;i<N;i++){
y[i]/=sum;
}

for(i=0;i<N;i++){
y[i]=exp(x[i]-max)
sum += y[i];
}

for(i=0;i<N;i++){
if(x[i]>max_val)
max = x[i];}

MAX Loop for N:
flh ft1,0(a2)
fmax.h max,ft1,max
addi a2,a2,2
addi a3,a3,-1
bnez a3, loop

EXP Loop for N/8:
ssr ft1 read double
ssr ft2 write double
frep N/8,8
vfsub.h ft3,ft1,max
vfsub.h ft4,ft1,max
vfexp.h ft3,ft3
vfexp.h ft4,ft4
vfsgnj.h ft2, ft3
vfsgnj.h ft2, ft4
vfadd.h ft3, ft3
vfadd.h ft4, ft4

EXP Loop for N:
#Initialization
flh ft0, 0(a0)
fsub.h ft1, ft0, ft5
...
#Exp approximation
srli a2, ft1, 20
andi a2, a2, 2047
bgeu a2,1067,overflow
fmul.d ft2, const1, ft1
fadd.d ft2, ft2, const2
fmul.d ft2, ft2, const3
fcvt.h.d ft1, ft2
#Update y[i], sum
#Solve overflow
...

MAX Loop for N/16:
ssr ft0 read double
frep N/16,4
vfmax.h ft3,ft3,ft0
vfmax.h ft4,ft4,ft0
vfmax.h ft5,ft5,ft0
vfmax.h ft6,ft6,ft0

NORM Loop for N/16:
fdiv.h (1/sum),1,sum
ssr ft0 read double
ssr ft1 write double
frep N/16,4
vfmul.h ft1,(1/sum),ft0
vfmul.h ft1,(1/sum),ft0
vfmul.h ft1,(1/sum),ft0
vfmul.h ft1,(1/sum),ft0

Baseline C code Baseline Assembly Optim Assembly

Fig. 4. Code comparison of Baseline and Optimized Softmax implemen-
tations. Baseline Softmax uses a piecewise polynomial approximation with
software LUTs for the exponential (EXP) function, explicitly handling over-
flow to infinity and subnormals. The notation frep n_frep, n_instr
represents a loop executing the following n_instr instructions for n_frep
iterations. All v instructions in the code are packed-SIMD operations.

matrix, we construct the loop using the FREP instruction. As
shown in Figure 4, targeting BF16 data and leveraging the
core’s 64-bit datapath, we utilize the VFMAX instruction in
MAX step to balance computation and load costs - processing
4 SIMD operations per 64-bit data load. To streamline data
loads and keep the datapath fully utilized, we exploit an SSR.

The results are then forwarded to the exponentiation step
(EXP), where we maintain a similar kernel structure using
FREP and SSR for efficient data loading. In this phase, we
leverage the VFEXP instruction, which performs the expo-
nentiation of a SIMD vector with 4 elements in 2 cycles.
In contrast, the baseline kernel, described in Section III-C,
computes the exponentiation in software with a latency of 319
cycles per BF16 item. For each computed exponential, we also
accumulate the sum using VFADD within the same FREP-SSR
loop.

Finally, we optimize the normalization step (NORM) by cal-
culating 1/sum outside the loop and performing a point-wise
scaling operation with a VFMUL instruction. Overall, these op-
timizations achieve 1.5 instructions/output, 2.125 cycles/output
while also benefiting from loop unrolling advantages, sig-
nificantly outperforming the baseline implementation, which
requires 56 instructions/output, 360 cycles/output.

D. Optimized FlashAttention-2 Kernel

We optimize the partial Softmax part of the FlashAttention-
2 kernel, which follows steps analogous to standard Softmax
but performs them over multiple tiles. The optimization meth-
ods including FREP, SSR and SIMD instructions (VFEXP,
VFMAX, VFSUB, VFMUL) are employed in the same manner

TABLE II
ACCURACY FOR GPT-2 AND VIT MODELS

Model Dataset Metric FP32 BF16 BF16 EXP

GPT-2 WikiText Perplexity (↓) 37.4 37.8 37.8
ArcEasy Accuracy (↑) 43.8 42.9 43.7

ViT-B ImageNet Accuracy (↑) 80.3 80.3 80.3
CIFAR-10 Accuracy (↑) 98.5 98.5 98.5

Fig. 5. Area breakdown of the Snitch cluster. BL: Baseline, EXP: Extended
FPU with the EXP block.

for the partial Softmax in FlashAttention-2 for partial MAX,
EXP, and NORM.

V. EVALUATION AND RESULTS

A. Accuracy Analysis

Following Belano et al. [25], the proposed exponentiation
algorithm achieves a mean relative error of 0.14% and a
maximum relative error of 0.78% with respect to glibc’s
implementation. Building upon this, we evaluate the accuracy
of our exponential implementation using pre-trained GPT-2
Small and ViT Base models. For GPT-2 Small, perplexity is
measured on WikiText-2, and accuracy is measured on ARC
Easy. For ViT Base, accuracy is evaluated on ImageNet-1K
and CIFAR-10. Comparisons are made against FP32 precision,
native BF16 casting, and BF16 casting with our optimized
EXP implementation, which employs a software-simulated
Schraudolph algorithm.

As shown in Table II, BF16 casting has minimal impact
on the accuracy of the models. Moreover, our proposed EXP
replacement demonstrates negligible differences compared to
standard BF16 casting. These findings validate the proposed
EXP approach as an efficient and accurate method for expo-
nential computation, preserving model accuracy. Notably, this
analysis demonstrates that Transformer models can be directly
cast to BF16 without the need for re-training or fine-tuning,
further highlighting the practicality of our approach.

B. Physical Implementation

We performed synthesis and place&route for one Snitch
cluster with eight cores, 128 KiB of TCDM, and 8 KiB
of instruction cache. Synthesis and implementation results
are gathered with Synopsys’ Fusion Compiler 2022.03 for
GlobalFoundries 12nm FinFET technology.

For timing analysis, we constrained the design to
1 GHz. With the addition of the exponentiation block, the

41

32 64 128 256 512 1024 2048
Sequence Length

10 1

100

101

102

103

La
te

nc
y

(
s)

(a) Softmax Latency

Baseline
SW Optim

SW & EXP SW Optim
SW & EXP HW Optim

Baseline SW Optim SW & EXP
 SW Optim

SW & EXP
 HW Optim

Implementation

0

2

4

6

8

10

12

La
te

nc
y

(µ
s)

(b) Softmax Latency of Seq Len 32

MAX EXP NORM

32 64 128 256 512 1024 2048
Sequence Length

10 1

100

101

102

E
ne

rg
y

C
on

su
m

pt
io

n
(m

J) (c) Softmax Energy Consumption

Baseline SW & HW Optim

32 64 128 256 512 1024 2048
Sequence Length

1

2

4

8

16

32

G
FL

O
PS

(d) FlashAttention Performance

Baseline Softmax Optim

32 64 128 256 512 1024 2048
Sequence Length

0

20

40

60

80

100

Pe
rc

en
ta

ge
 o

f L
at

en
cy

 (%
)

(e) FlashAttention Latency

GEMM
Softmax BL

Others
Softmax Optim

32 64 128 256 512 1024 2048
Sequence Length

10

20

40

80

160

G
FL

O
PS

/W

(f) FlashAttention Energy Efficiency

Baseline Softmax Optim

Fig. 6. Performance, latency, and energy analysis for Softmax and FlashAttention-2 kernels.

TABLE III
ENERGY PER OPERATION FOR GEMM AND EXP

Energy/Op [pJ/Op] Snitch Baseline ISA Extended

GEMM 3.96 4.04
EXP 3433 6.39

Snitch cluster achieved 1.15 GHz under typical conditions
(TT/0.8 V/25 °C) without introducing any new critical paths.
Under worst-case conditions (SS/0.72 V/125 °C), the design
reached up to 941 MHz.

For the area analysis, we evaluated the cluster, core complex
(comprising the integer core and the FPU subsystem), and FPU
subsystem (SS), as shown in Figure 5. At the cluster level,
the total area increased by 1.0% compared to the baseline
Snitch cluster due to the increase in the area of the eight core
complexes. At the core complex level, the FPU SS exhibited
a 1.9% area increase relative to the baseline. Within the FPU
SS, the addition of the EXP block accounted for 8 kilo Gate
Equivalents1 (kGE), corresponding to a 2.3% increase in the
area of SS.

To measure power, we performed parasitics-annotated gate-
level netlist simulations using Synopsys’ PrimeTime 2022.03
under typical conditions (TT/0.8 V/25 °C). In Table III,
GEMM kernels (48×48, 85% FPU utilization) are compared
between the baseline Snitch and ISA-extended Snitch. Adding
the EXP block increased Snitch cluster’s average power
by 1.8%, with energy per operation rising from 3.96 to
4.04 pJ/Op.

For EXP implementation, the new EXP instruction was
benchmarked against the baseline method (piecewise LUT
with polynomial approximation), which requires 319 cycles
per call and has low FPU utilization (6.5%). The ISA-extended

1One Gate Equivalent (GE) represents the area of a minimum-sized two-
input NAND gate, which is 0.121 µm2 in GF 12nm technology.

Snitch core performs exponential calculations in hardware in
two clock cycles. During the execution of the EXP kernel,
the ISA-extended Snitch’s average power increased by 2.4×.
However, the execution time dropped from 319 cycles/output
to 0.5 cycles/output (with 4-way SIMD instruction VFEXP),
reducing the energy from 3433 to 6.39 pJ/Op.

C. Benchmarks

Softmax: We evaluated four Softmax implementation con-
figurations: the baseline described in Section III-C, an
optimized version using Snitch’s existing ISA extensions
(SW Optim), a further optimized version incorporating the
software-implemented Schraudolph exponential function (SW
& EXP SW Optim), and a final version combining Snitch’s
ISA extensions with hardware acceleration via the EXP
instruction (SW & EXP HW Optim). Performance bench-
marks were conducted using ModelSim-2022.3, with the sys-
tem running at 1GHz.

In Figure 6a, our final implementation (SW & EXP HW
Optim) achieve up to 162.7× speedup over the baseline,
while software-only optimizations show minimal gains due to
the exponential operation bottleneck. The Schraudolph method
in software offers some acceleration but is far outperformed
by hardware by a factor of 19.6×. Figure 6b demonstrates the
negligible impact of MAX and NORM on total latency, with
software achieving only a 1.1× speedup, compared to 61.6×
for combined hardware and software optimizations. Finally,
Figure 6c shows energy reductions of up to 74.3×.

FlashAttention-2: We evaluated the FlashAttention-2 ker-
nel on one Snitch cluster with a head dimension of 64
(GPT2 configuration). The results, shown in the second row
of Figure 6, highlight several improvements. In Figure 6d, our
implementation achieves up to 8.2× increase in throughput
over the baseline. Figure 6e illustrates that Softmax dominates
the latency in the baseline, while its contribution is reduced to

42

TABLE IV
COMPARISON OF STATE-OF-THE-ART SOFTMAX ACCELERATORS

Ref Precision Accuracy Evaluated Tech Frequency* Area* Power Throughput Strategy
[MSE] Model [nm] [GHz] [µm2] [mW] [GOPS]

Zhu et al. [16] FX16 1.06e-10/2.28e-121 Transformer-XL 28 2.78/1.641 10081/183921 - 22.24/13.12†,1 FX16 quant.
Koca et al. [17] FX16 - BERT FPGA - - - - No fine-tuning
Kim et al. [18] FX8/FX16 71.2e-12/4.77e-122 - 28 3.12/2.52 7100/249002 22.82/52.462 24.96/20†,2 -
Xia et al. [19] FP16/FP32-FX3 - BERT FPGA - - - - Fine-tuning
Yu et al. [20] INT32/FP16/FP32 - RoBERTa, MobileBERT 7 1.5/0.74/0.624 1009/498/11344 0.06/0.02/0.044 - No fine-tuning

Wang et al. [21] INT8/FP32 - DeiT, Swin, BERT 28 1 - - - No fine-tuning
Liu et al. [22] INT8-FP5 - GPT-2 16 1.25 800 0.2 - Training

Our BF16 1.62e-9 GPT-2, ViT 12 1 9686 7.16 0.456 No fine-tuning
* Results are reported only for standalone designs (all synthesis results except for [18]). For our design, we present the frequency of the full cluster and the post-layout area.
† Denotes peak throughput, which may differ from average throughput.
1 The precision of the design is adjustable. The first value corresponds to the lowest precision setting, while the second value represents the highest precision setting (P = 3) evaluated in the

referenced paper.
2 The accelerator supports two input precisions: FX8 (first) and FX16 (second). For FX16, the reported results correspond to the version with a parallelization factor of 8.
3 Internal computations are performed in fixed-point format, with input and output values converted from and to floating-point format.
4 Values are reported for INT32, FP16, and FP32, respectively.
5 Internal computations are performed in floating-point format, with input and output values converted from and to INT8.
6 For our design, the reported area corresponds to the EXP unit per core, while the power and throughput are averaged over the entire Softmax operation per core.

512b Cluster Crossbar

Cluster 0 …

64b Cluster Crossbar

System Peripherals

…

512b HBM Crossbar
G

HBM
8x

…

512b Group Crossbar

512b Cluster Crossbar

64b Cluster Crossbar 64b Cluster Crossbar

512b
S

ystem
 C

rossbar

Cluster C-1 Cluster 0 Cluster C-1

Group 0 Group G-1

x

1 11 1
2 2

3

Fig. 7. Hierarchical multi-cluster architecture with heterogeneous memory
interconnect: (1) Cluster-to-SPM interconnect, (2) Inter-Cluster communica-
tion, and (3) Inter-Group communication.

6% in the optimized version. Moreover, the energy efficiency
of FlashAttention-2 improves up to 4.1× with the optimized
Softmax as shown in Figure 6f.

D. Scalability Analysis
The Snitch cluster is designed to scale into a multi-cluster

architecture, silicon-proven in Occamy [27]. As shown in
Figure 7, a group of C compute clusters is connected by
a 64-bit crossbar for fast synchronization and a 512-bit
AXI crossbar for high-bandwidth inter-cluster access. Further
scaling is achieved by linking G groups through a group-
level AXI crossbar, enabling inter-group communication. Each
group also interfaces with eight HBM channels through a wide
crossbar, ensuring high-bandwidth access to main memory.

We benchmark runtime and energy metrics against [5] on
GPT-2 Small, GPT-3 XL, ViT-Base, and ViT-Huge models.
All models are evaluated non-autoregressively on a 16-cluster
version of the Occamy system [27], with sequence lengths of
2048 for GPT models and 197 for ViT models. Following [5],
we map each attention head to a single Snitch cluster, loading
each Q tile from HBM to SPM via DMA and iteratively
transferring and processing the corresponding K and V tiles.

As shown in Figure 8, the FlashAttention-2 kernel domi-
nates runtime in the baseline implementation for both GPT
and ViT models. With Softmax optimizations applied, overall

GPT2
 BL

GPT2
 Optim

GPT3
 BL

GPT3
 Optim

0

100

200

300

400

500

R
un

tim
e

[m
s]

(a) GPT Models Runtime
FA
Linear

Softmax
Other

GPT2
 BL

GPT2
 Optim

GPT3
 BL

GPT3
 Optim

0

200

400

600

800

1000

1200

E
ne

rg
y

[m
J]

(b) GPT Models Energy
Baseline
Optim

ViT-B
BL

ViT-B
Optim

ViT-H
BL

ViT-H
Optim

0

2

4

6

8

R
un

tim
e

[m
s]

(c) ViT Models Runtime
FA
Linear

Softmax
Other

ViT-B
BL

ViT-B
Optim

ViT-H
BL

ViT-H
Optim

0

5

10

15

20

25

E
ne

rg
y

[m
J]

(d) ViT Models Energy
Baseline
Optim

Fig. 8. Runtime and energy comparison of Softmax-optimized (Optim) system
with the baseline (BL) for GPT and ViT models.

runtime improves significantly, achieving speedups of 5.8×,
2.9×, 1.9×, and 1.4× for GPT-2, GPT-3, ViT-Base, and ViT-
Huge, respectively. Similarly, energy consumption decreases
substantially, with reductions of 3.6×, 1.7×, 1.4×, and 1.2×
for these models, respectively.

VI. COMPARISON WITH THE STATE-OF-THE-ART

We compare our solution to state-of-the-art Softmax acceler-
ators evaluated for Transformer models, as shown in Table IV.
Unlike fully custom datapaths for all Softmax operations, our
approach introduces an ISA extension to accelerate only the
exponential function while optimizing the remaining opera-
tions in software. This hybrid method balances efficiency and
flexibility, supporting a broader range of applications at a low
cost.

Our approach employs BF16 precision and achieves a mean
squared error (MSE) of 1.62e−9, which is comparable to
fixed-point approximations by Zhu et al. [16] and Kim et al.
[18]. In addition to this MSE, we demonstrate that our approx-
imation preserves FP32/BF16 accuracy of GPT-2 and ViT-B,
as detailed in Section V-A. Most other works do not evaluate
their methods on LLMs but rather focus on smaller, encoder-
only models. Although Liu et al. [22] achieves convergence to
the same perplexity as the original GPT-2 during training, it
remains unclear whether this approach can be applied without

43

fine-tuning. Moreover, their architecture is designed for INT8
inputs/outputs while internally utilizing FP16 precision.

Other works primarily report post-synthesis evaluations
(except for [18]), omitting factors such as clock tree im-
plementation and physical design. They also exclude timing,
area, and power overheads arising from the integration of the
custom datapaths into complex compute systems, making a
thoroughly fair comparison impractical. Furthermore, while
we report the average throughput per core over the entire
Softmax computation, Zhu et al. [16] and Kim et al. [18]
provide only peak throughput values, which neglect itera-
tions required for sequence lengths exceeding the hardware-
supported size of 8, as well as memory operations. Despite
these limitations, our hybrid hardware-software approach, with
a compact area footprint of 968 µm2 per core, achieves 1.1×
better area efficiency (in terms of Op/cycle/mm2) compared
to the high-precision version of [16] and only 1.7× lower
area efficiency than the low-precision version, without com-
promising flexibility. Notably, our approach does not require
fine-tuning or quantization. Furthermore, our method delivers
1.4× greater area efficiency than the FX16 version of [18]
while having 2.4× lower area efficiency compared to the FX8
version. The lower power efficiency compared to [18] stems
from the focus on optimizing the exponential function with
higher precision, whereas [18] employs a softmax-specific
hardware implementation with reduced fixed-point precision.
Additionally, the reported power consumption accounts for
the entire core over the full softmax computation, rather than
only the exponential unit, with power consumption being 3.2×
(FX8) and 7.4× (FX16) lower than that of [18].

VII. CONCLUSION

This work proposes a novel method to accelerate the Soft-
max function, a key bottleneck in Transformer models, by
integrating a custom exponential instruction into the RISC-
V Snitch architecture. Through hardware/software co-design,
the approach achieves up to 162.7× speedup, with 5.8× and
3.6× reductions in latency and energy for GPT-2 and ViT
models. This research demonstrates the potential of RISC-
V for energy-efficient AI in resource-constrained settings,
balancing precision, power, and simplicity.

REFERENCES

[1] F. Zaruba, F. Schuiki, T. Hoefler et al., “Snitch: A Tiny Pseudo Dual-
Issue Processor for Area and Energy Efficient Execution of Floating-
Point Intensive Workloads,” IEEE Transactions on Computers, vol. 70,
no. 11, pp. 1845–1860, Nov. 2021.

[2] Y. Guo, Y. Lang, and Q. Ren, “GPTQT: Quantize Large Language
Models Twice to Push the Efficiency,” Jul. 2024, arXiv:2407.02891.

[3] H. Touvron, T. Lavril, G. Izacard et al., “LLaMA: Open and Efficient
Foundation Language Models,” Feb. 2023, arXiv:2302.13971.

[4] A. Vaswani, N. Shazeer, N. Parmar et al., “Attention is All you Need,”
in Advances in Neural Information Processing Systems, vol. 30, 2017.

[5] V. Potocnik, L. Colagrande, T. Fischer et al., “Optimizing Foundation
Model Inference on a Many-tiny-core Open-source RISC-V Platform,”
May 2024, arXiv:2405.19284.

[6] J. R. Stevens, R. Venkatesan, S. Dai et al., “Softermax: Hardware/Soft-
ware Co-Design of an Efficient Softmax for Transformers,” in 2021 58th
ACM/IEEE Design Automation Conference (DAC). San Francisco, CA,
USA: IEEE Press, 2021, pp. 469–474.

[7] S. Kim, A. Gholami, Z. Yao et al., “I-BERT: Integer-only BERT
Quantization,” Jun. 2021, arXiv:2101.01321.

[8] G. Islamoglu, M. Scherer, G. Paulin et al., “ITA: An Energy-Efficient
Attention and Softmax Accelerator for Quantized Transformers,” in 2023
IEEE/ACM International Symposium on Low Power Electronics and
Design (ISLPED), Aug. 2023, pp. 1–6.

[9] T. Dao, D. Y. Fu, S. Ermon et al., “FlashAttention: Fast and
Memory-Efficient Exact Attention with IO-Awareness,” Jun. 2022,
arXiv:2205.14135.

[10] T. Dao, “FlashAttention-2: Faster Attention with Better Parallelism and
Work Partitioning,” Jul. 2023, arXiv:2307.08691.

[11] J. van der Hoeven and F. Johansson, “Fast multiple precision exp(x)
with precomputations,” in 2024 IEEE 31st Symposium on Computer
Arithmetic (ARITH), Jun. 2024.

[12] H. Chen, L. Quan, and W. Liu, “HGH-CORDIC: A High-Radix Gen-
eralized Hyperbolic COordinate Rotation Digital Computer,” in 2024
IEEE 31st Symposium on Computer Arithmetic (ARITH), Jun. 2024.

[13] Q. Sun, Z. Di, Z. Lv et al., “A High Speed SoftMax VLSI Architecture
Based on Basic-Split,” in 2018 14th IEEE International Conference on
Solid-State and Integrated Circuit Technology (ICSICT), Oct. 2018.

[14] H. Dong, M. Wang, Y. Luo et al., “PLAC: Piecewise Linear Ap-
proximation Computation for All Nonlinear Unary Functions,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 28,
no. 9, Sep. 2020.

[15] N. N. Schraudolph, “A Fast, Compact Approximation of the Exponential
Function,” Neural Computation, vol. 11, no. 4, May 1999.

[16] D. Zhu, S. Lu, M. Wang et al., “Efficient Precision-Adjustable Archi-
tecture for Softmax Function in Deep Learning,” IEEE Transactions on
Circuits and Systems II: Express Briefs, vol. 67, no. 12, pp. 3382–3386,
Dec. 2020.

[17] N. A. Koca, A. T. Do, and C.-H. Chang, “Hardware-efficient Softmax
Approximation for Self-Attention Networks,” in 2023 IEEE Interna-
tional Symposium on Circuits and Systems (ISCAS), May 2023, pp. 1–5.

[18] J. Kim, S. Kim, K. Choi et al., “Hardware-Efficient SoftMax Architec-
ture With Bit-Wise Exponentiation and Reciprocal Calculation,” IEEE
Transactions on Circuits and Systems I: Regular Papers, vol. 71, no. 10,
pp. 4574–4585, Oct. 2024.

[19] T. Xia and S. Q. Zhang, “Hyft: A Reconfigurable Softmax Accelerator
with Hybrid Numeric Format for both Training and Inference,” in
Proceedings of the 29th ACM/IEEE International Symposium on Low
Power Electronics and Design, ser. ISLPED ’24, 2024, pp. 1–6.

[20] J. Yu, J. Park, S. Park et al., “NN-LUT: neural approximation of non-
linear operations for efficient transformer inference,” in Proceedings of
the 59th ACM/IEEE Design Automation Conference, ser. DAC ’22, 2022,
pp. 577–582.

[21] W. Wang, S. Zhou, W. Sun et al., “SOLE: Hardware-Software Co-design
of Softmax and LayerNorm for Efficient Transformer Inference,” in
2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD), Oct. 2023, pp. 1–9.

[22] S. Liu, G. Tao, Y. Zou et al., “ConSmax: Hardware-Friendly Alternative
Softmax with Learnable Parameters,” Nov. 2024, arXiv:2402.10930.

[23] N. Burgess, J. Milanovic, N. Stephens et al., “Bfloat16 Processing
for Neural Networks,” in 2019 IEEE 26th Symposium on Computer
Arithmetic (ARITH), Jun. 2019, pp. 88–91.

[24] F. Schuiki, F. Zaruba, T. Hoefler et al., “Stream Semantic Registers: A
Lightweight RISC-V ISA Extension Achieving Full Compute Utilization
in Single-Issue Cores,” IEEE Trans. Comput., vol. 70, no. 2, pp. 212–
227, 2021.

[25] A. Belano, Y. Tortorella, A. Garofalo et al., “A Flexible Template
for Edge Generative AI with High-Accuracy Accelerated Softmax &
GELU,” Dec. 2024, arXiv:2412.06321.

[26] L. Bertaccini, G. Paulin, T. Fischer et al., “MiniFloat-NN and ExSdotp:
An ISA Extension and a Modular Open Hardware Unit for Low-
Precision Training on RISC-V Cores,” in 2022 IEEE 29th Symposium
on Computer Arithmetic (ARITH), Sep. 2022, pp. 1–8.

[27] G. Paulin, P. Scheffler, T. Benz et al., “Occamy: A 432-Core 28.1 DP-
GFLOP/s/W 83% FPU Utilization Dual-Chiplet, Dual-HBM2E RISC-V-
Based Accelerator for Stencil and Sparse Linear Algebra Computations
with 8-to-64-bit Floating-Point Support in 12nm FinFET,” in 2024 IEEE
Symposium on VLSI Technology and Circuits (VLSI Technology and
Circuits), Jun. 2024, pp. 1–2.

44

