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Abstract—Dividing by a constant is an operation that is often
needed in algorithms, be they implemented in software or in
hardware. Given the fact that general purpose processors have had
fast hardware multipliers for decades, the solution for software is
to multiply by a compile time computed reciprocal and perform
some adjustment. However, for hardware implementations, in
particular with relatively small and exotic bit sizes, shift-and-add
solutions might be worth looking at. In this paper, we report
our study on implementing constant unsigned division based on
Li’s work. We found that a few of his algorithms are wrong
and propose corrections that need a bit more computations. For
software, we show that the approach can be useful only for
low-end microcontrollers. For hardware, our FPGA and ASIC
synthesis outline that it has good scalability, although being not
very efficient for small dividends. As delay and area are very
dependent on the value of the divisors, this approach appears as
yet another possibility to choose from when looking on how to
divide by a given constant.

I. INTRODUCTION

We got interested in constant Euclidean division algorithms
for hardware while looking on how to perform the average
pooling operation that many convolutional neural networks
need. In these networks, kernels are odd and square, thus 3×3,
5 × 5 and 7 × 7 kernels are vastly used (although larger sizes
might also be used [1]). Average pooling is a new name for
mean: it performs the sum of all values in the kernel and
divides it by its size, that is a constant defined by the network
architecture. Therefore, efficiently computing the quotient of
an unsigned division by 9, 25 and 49 was our original goal.

Back in 1985, Li published a cookbook [2] of mostly non-
trivial routines using shift-and-add to perform unsigned division
for odd constants between 3 and 55. These routines have been
found experimentally, and some of them are quite unexpected,
but indeed work. Although useless for mainstream processors,
as we will see, they might have a place for microcontrollers.
They are also quite appealing for hardware in which shifts are
free, and multipliers expensive. Our interest lies mainly in this
latter use.

To the best of our knowledge, no systematic evaluation of
Li’s routines has been carried out, or at least reported in the
literature. To start with, the paper introduces Section II Li’s
routines, focusing on our corrections of 5 of them and on the
tiny modifications to do for their hardware versions. Then we
detail our experiments. First, Section III, we compare the run
times of Li’s approach (SA, for shift-and-add) and Granlund
and Montgomery (MH, for multiply high) [3] algorithm on a
general-purpose processor. Second, Section IV, we synthesize

circuits for odd constants between 3 and 55, for bit sizes
between 4 and 32. We also compare to previous works on
some constant values for dividend bit sizes up to 64. Finally,
we summarize our findings and draw conclusions Section V.

II. LI’S ROUTINES

In his paper, Li first presents a general approach to constant
division based on the Fermat-Euler theorem, which states that
if 𝑐 and 𝑝 are coprime, then 𝑐𝜑 (𝑝) is congruent to 1 modulo 𝑝,
where 𝜑 is Euler’s totient function. Assuming 𝑐 = 2, 𝑝 > 1 and
odd, the theorem warranties the existence of a number 𝑛 < 𝑝

such that 𝑝 divides 2𝑛 − 1. He searches for the smallest such 𝑛

and writes down 2𝑛−1
𝑝

in its binary form, 𝑏1𝑏2𝑏3 . . . 𝑏𝑛−1. From
that binary representation he derives the following equation:

1
𝑝
= 0.(0𝑏1𝑏2𝑏3 . . . 𝑏𝑛−1)

∞∏
𝑖=0

(1 + 1
2𝑛×2𝑖

)

Let us take the division by 23 to illustrate the principle.
The smallest integer 𝑛 such that 23 divides 2𝑛 − 1 is 11,
and 2047/23 = 89 or 10110012. The binary form has to be
written on 11 bits to have the proper magnitude, leading to
000010110012. (Note that this is a nice theoretical way to find
the base bit pattern in 1

23 and its period). We now can write:

𝑥

23
=

( 𝑥
25 + 𝑥

27 + 𝑥

28 + 𝑥

211

) (
1 + 1

211

) (
1 + 1

222

) (
1 + 1

244

)
· · ·

For 32-bits values, this requires 6 shifts and 5 adds, while it
would require 12 of them using 1

23 raw binary decomposition.
Although mathematically sound, this ignores truncation errors,
and is not optimal. Li soon discovered that solutions with a
lower count of operations can be found empirically on this
basis “through trial and error”, by in particular using subtraction
and reuse of intermediate values. As opposed to more general
solutions, his routines do not compute the remainder to make
a final adjustment. These solutions are hard to derive, and Li
gives a table that contains the best routines for odd divisors
between 3 and 55 he could come out with. He reports brute
force testing between 0 and 500×106 without errors.

Using his divide by 49 routine quickly led to an error that
encouraged us to look more deeply into his cookbook, by
basically retesting all routines. It happens that 5 routines out
of 27 fail pretty quickly to properly divide 32-bit numbers.
Three, for 7, 27 and 39, are typos, and two, 49 and 53 seem just
wrong. Given the performances of the machines of that time,
the “guessing” process was probably quite lengthy compared
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to what it is today, which partly explains the errors in the
paper. Using an approach similar to Li’s, we corrected the
typos and devised two new routines for these cases. We give
our corrections here in plain C.
Division by 7 misses one shift:
uint32_t divu7(uint32_t n)
{

uint32_t x = n + 1;
x = (x << 2) + (x >> 1);
x = (x >> 6) + x;
x = (x >> 12) + x; /* line missing in Li's paper */
x = (x >> 24) + x;
return x >> 5;

}

Division by 27 assigned the wrong variable on one line:
uint32_t divu27(uint32_t n)
{

uint32_t x = n, y;
y = (x << 1) + x + 15;
x = (y >> 2) + (x << 2); /* y was assigned on this line */
x = x - (x >> 9);
x = (x >> 18) + x;
return x >> 7;

}

Division by 39 added the wrong variable in one expression:
uint32_t divu39(uint32_t n)
{

uint32_t x = n + 1, y;
y = (x << 1) + x;
y = (x >> 2) + y;
x = (x >> 5) + y; /* x was added on this line */
x = (x >> 12) + x;
x = (x >> 24) + x;
return x >> 7;

}

We couldn’t find simple syntactic changes in Li’s division by
49 to correct it. We came out with the following routine, that
uses the same number of additions but one more shift.
uint32_t divu49(uint32_t n)
{

uint32_t x = n;
x = (x << 2) - (x >> 5) + 2;
x = x + (x >> 2) + (((x >> 4) + x) >> 4);
x = (x >> 21) + x;
return x >> 8;

}

Similarly to 49 for 53, we did not find what could be seen as
typos, and determined the following routine. This routine uses
two more additions and shifts than the erroneous original.
uint32_t divu53(uint32_t n)
{

uint32_t x = n + 1, y;
y = (x << 1) + (x >> 2);
y = x + y + (y >> 5);
y = y + ((x - (x >> 3)) >> 11) + ((x - (x >> 5)) >> 16)

+ (x >> 23) + (x >> 24);
x = (x << 2) + (y >> 2);
return x >> 8;

}

For software, these routines suffer from the fact that the
dividend has first to be shifted left to avoid losing precious bits
when later adding and shifting right. They must thus use the
next larger type internally to avoid early errors. Nevertheless,
if the upper bound of the dividend is known, which is often
the case, then the routines can be used. For example, on 32-bit

values, the bound at which the first of all routines starts to fail
is 2200 000016.

For hardware, adding 2 or 3 upper bits in an adder is not free,
but far less than doubling its bit size. This makes the routines
interesting in situations in which the bit size is constrained, as
then the dividend maximal value is known beforehand.

III. SOFTWARE USAGE

We measured the execution time of Li’s routines (our
modifications applied) and compared it to MH technique, as
implemented in gcc v14.2.1. This latter method is fully general
and exact but requires the computation of the upper 𝑛 bits of
the result of a 𝑛 × 𝑛 bits multiplication. All general-purpose
processors implement this in hardware currently through the
multiply high (unsigned in our case) instruction, with a
multiplication throughput of 1 operation per cycle. The measure
is performed by executing each constant division algorithm
10000 times, and then run again for the same number of
iterations, but this time also measuring the elapsed time using
the approach advocated by [4]. This ensures the cache is
hot, which induces a low variance of the measurements. The
computation is forced by qualifying the target quotient variable
as volatile and by using the loop counter as dividend. This
process is repeated 1000 times, and we compute a mean and
a standard deviation over 100 instructions. The processor used
for the experiments is an Intel i7-13800H. As visible Figure 1,
the results are indisputable: MH outperforms significantly
Li’s approach in all but in 3 cases, the ones for which the
adjustments after the multiply high are fairly complex (see
Table I that reports the number of x86-64 instructions for the
SA and MH methods), for which both solutions are in par.
Interestingly enough, a division by a constant using MH takes
in average just a bit more than one cycle on a modern core,
half as much as the optimized SA approach.
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Fig. 1. Run times of Shift-and-Add and Multiply High, 32-bit dividend.

For small microcontrollers, e.g. based on the bare rv32i
RISC-V instruction set or the ARM Cortex M0/M0+/M1 ones,
the optimized SA approach can be useful. Although these
latter processors might contain a 1 cycle 32×32 multiplication
(The “slow” version of the instruction takes 32 cycles [5]), the
32 upper bits of the result needed for MH are not available,
while computing them requires at least 16 basic instructions [6,
Section 8.2]. Given our measures, constant division would then
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TABLE I
NUMBER OF X86-64 INSTRUCTIONS FOR SA AND MH DIVISIONS (SA/MH)

divisor 3 5 7 9 11 13 15 17 19
nb insns 10/3 10/3 13/6 13/2 12/3 15/2 10/3 10/3 10/7
divisor 21 23 25 27 29 31 33 35 37

nb insns 10/7 13/3 12/2 9/6 13/3 10/6 12/2 13/7 11/7
divisor 39 41 43 45 47 49 51 53 55

nb insns 13/7 10/3 10/2 12/6 17/3 14/2 7/3 27/6 16/6

always be more efficiently done using SA on these architectures,
even though, unlike the rest of the ARM cores, they do not
support shifts within the add and sub instructions.

IV. HARDWARE USAGE

Doing constant division in hardware is quite common: filters
in image processing accelerator are typical examples, but this
spans many more areas. An authoritative source is de Dinechin
and Kumm recent book [7, Chapter 13] that devotes a chapter
to this topic. Several approaches are competing. One uses the
paper and pencil algorithm using an appropriate power of two
radix [8] to index look-up tables in series. This can be done
partly in parallel, speeding-up the process at the cost of area [9].
A different parallel look-up table based approach followed by
an adder tree is presented in [10]. These approaches are quite
heavily based on small memory cuts, and compute both the
quotient and reminder. Other approaches, such as Li’s one,
rely on bit patterns analysis and try to combine them through
shifting in a way that minimizes the number of additions,
e.g. [11, 12]. To the best of our knowledge there is no hardware
synthesis result of Li’s approach that has been published.
Somehow, this is explainable, because the routines have been
devised for relatively large dividends, are very ad-hoc, and
fail before reaching the largest value that can be represented
by the dividend type. However, in hardware we can extend
the intermediate results with as many (in the order of 1 per
assignment) bits as needed to support the full range of values
of the type.

We translated Li’s routines in Verilog (increasing the
intermediate results), exhaustively tested them using Verilator,
and ran FPGA synthesis using Vivado 23.2 for bit width ranging
form 3 to 32, targeting AMD VC709 board. Figure 2 and 3
plots respectively the number of LUTs and the propagation
delay as a function of the bit width for all divisors.

The Figures are a bit crowded, and not so easy to read due to
the very ad-hoc nature of the computations: there is no reason
why a smaller divisor would lead to a smaller (or bigger)
circuit, as opposed to approaches that iteratively consume 𝑘

bits to access a look-up table. Nevertheless, we can see on
Figure 2 that the resources are increasing more or less linearly
with the number of bits, and on Figure 3 that delays tend to
plateau, with sudden increases when reaching a number of bits
that depends on the algorithm.

To compare with the existing approaches, we made mea-
surements at the same points than [9] and [10]. We present the
results in Table II, in which the values relative to the existing
approaches are borrowed from [10]. Note that quotient only
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Fig. 2. Li: Number of LUTs on Virtex 7.
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Fig. 3. Li: Circuit delay in ns on Virtex 7.
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Fig. 4. Brute-force: Number of LUTs and delay on a Virtex 7.

computation is only very slightly simpler than computing the
quotient and the remainder according to [9]. As Li’s routines
only produce the quotient, the comparison is a bit positively
biased towards this method. In addition, the divisors 3, 5, 11
and 23 chosen in the previous works do not make much sense
with the optimized SA approach, as the complexity in time
and space of the solution depends on the bit pattern of the
reciprocal and our capabilities to make use of it efficiently.
Finally, although [9] synthesized for Kintex 7 while we do it
for Virtex 7, the target LUTs are identical.

What can be seen on this Table is that Li’s approach is not
efficient for small dividend bit sizes compared to the other
approaches, neither in area nor in speed. Nevertheless, the area
and delay increase only slightly with the number of bits, which
allows for a different trade-off than the other approaches.

We also generated constant tables synthesized as combina-
tional circuits. The results of this brute-force approach are
reported Fig. 4. Although we could synthesize tables with up
to 24 address bits, the exponential growth in number of LUTs
makes the approach unpractical above 11 bits.

For completeness, we synthesized ASIC versions of the
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TABLE II
DELAY AND AREA AFTER FPGA SYNTHESIS

(BR: BLOCK RAM)

This work SC [10] LinArch [9] BTCD [9]
Delay Area Delay Area Delay Area Delay Area

d n ns LUTs ns LUTs ns LUTs ns LUTs + BR

16 7.2 46 4.1 40 3.6 17 3.7 37
3 32 8.6 114 11.4 98 6.0 32 4.8 95

64 9.0 277 27.5 379 13.5 63 6.2 225

16 7.2 44 4.0 52 4.4 21 3.8 44
5 32 8.6 111 10.6 123 9.3 45 4.7 109

64 9.0 274 27.3 386 20.1 93 6.7 270

16 7.5 42 3.9 53 8.0 39 3.8 79
11 32 8.7 106 10.7 159 17.9 87 6.1 212

64 10.4 265 26.9 436 39.0 183 8.8 526

16 7.5 41 3.9 52 7.4 69 5.6 197
23 32 8.7 103 10.4 187 18.5 165 6.8 436 + 1BR

64 10.4 256 26.1 493 36.6 357 6.5 959 + 2.5BR

circuits for the 4 above divisors, adding 47 and 51, that appear
to be respectively the slowest and the fastest designs on FPGA.
We target STMicroelectronics 28 nm FDSOI technology low
power library, typical corner, 1 V, 40°C, with area optimization.
Figures 5 and 6 plot respectively the area in 𝜇𝑚2 and the delay
in ns of the circuits. Although we show the results for area
optimization, delay optimization leads to very similar results.
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Fig. 5. Circuit area in 𝜇𝑚2 for STMicroelectronics 28 nm FDSOI technology.
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Fig. 6. Circuit delay in ns for STMicroelectronics 28 nm FDSOI technology.

We compared to [9] in which ASIC synthesis is done for the
same technology. Li’s routines are overall quite slower: they
are quickly above a nanosecond, while the other works stay
below, even though their slope is higher. The analysis shows
long paths, due to the sequential nature of the adder tree the
routines require. Area is on the other hand is around a factor
of two below the other approaches.

As the previous works, these routines can be pipelined to
reach a throughput of one division per cycle.

V. SUMMARY AND CONCLUSION

In this paper, we have thoroughly evaluated Li’s fast constant
division routines. First, we have checked their results and seen
that, in 5 out of the 27 divisors of his cookbook (all odd
numbers between 3 and 55 included), incorrect values were
produced for 32-bit dividends. Three cases can be classified as
typographic errors, while the last two were more challenging.
We proposed corrections for all of them.
We then compared the approach of Li to the one of Granlund
and Montgomery for software targets. We concluded that apart
from small microcontrollers not providing the multiply high
instruction, the latter approach is always better, by, in average,
a factor of two. Next, we focused on hardware, which was our
original intent. We synthesized the routines for both an FPGA
and an ASIC target technology, and compared with alternative
solutions. Overall, Li’s routines offer good scalability but
relatively large initial propagation delays, and their figures
of merits are very dependent on the value of the divisor. They
can be seen as one of a number of possibilities when it comes
to choose a method to divide by a constant for a specific case.

The main drawback of these routines is their ad-hocness, and
it turns out that on 64 bits, the 29, 35, 39, 49, 53 and 55 cases
lead to errors much before expected due to rounding errors. A
rather obvious perspective would be to try to formalize and
generalize the approach, if only to guide a heuristic search.

Finally, the code that allows to reproduce this work is
available at https://github.com/fpetrot/divbysmallcst.
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