
Double-Word Decomposition in a Combined
FP16, BF16 and FP32 Dot Product Add Operator

Orégane Desrentes ∗†, Benoı̂t Dupont de Dinechin ∗ and Florent de Dinechin †
∗ Kalray S.A., 38330 Montbonnot-Saint-Martin, France, {odesrentes, bddinechin}@kalrayinc.com

† INSA Lyon, Inria, CITI, UR3720, 69621 Villeurbanne, France, florent.de-dinechin@insa-lyon.fr

Abstract—This work presents a floating-point Fused Dot Prod-
uct Add operator designed for two use cases: mixed-precision
matrix multiply add for deep learning and single-precision
arithmetic for numerical computing. We build on classic double-
word techniques to emulate FP32 arithmetic as the unevalu-
ated sum of lower-precision floating-point numbers. Specifically,
we introduce E9S12, a 9-bit exponent, 12-bit significant, non-
normalized floating-point format, to represent either the FP16
and BF16 multiplicands or the results of the FP32 multiplicand
decomposition inside a Fused Dot Product Add operator. The re-
sulting operator correctly rounds the FP16 products accumulated
in FP32 and also matches the standard FP32 FMA arithmetic
when the size-4 E9S12 dot product operates on decomposed FP32
multiplicands. We evaluated the implementation of this combined
FP16, BF16 and FP32 Dot Product Add operator and compare
it to correctly rounded Fused Dot Product Add operators by
synthesis for a 4nm technology node.

Index Terms—Dot Product, FP16, BF16, FP32

I. INTRODUCTION

Processing units for deep learning applications rely on
mixed-precision Matrix Multiply Add (MMA) units to ac-
celerate convolutions and other linear operations. These
units may be built from Dot Product Add (DPA) op-
erators: R = Z +

∑
Xi × Yi. The multiplicands are 16-

bit IEEE 754 [1] floating-point numbers (FP16), Bfloat16
(BF16) [2] or 8-bit floating-point numbers [3]. Their product
is accumulated into a 32-bit IEEE 754 binary floating-point
(FP32) number [4], [5], [6], [7]. The performance and energy
efficiency of these MMA units motivate their use for numerical
computing in FP32 or higher precision.

A. Double-Word Arithmetic

The core idea (Fig.1) is to adapt the principles of double-
word arithmetic [8] to linear algebra [9].

To accelerate an FP32 matrix multiplication C = AB using
an FP16 MMA unit, A and B are decomposed as the uneval-
uated sum of FP16 matrices A ≃ Ah+Al and B ≃ Bh+Bl.
A mixed-precision MMA then computes an approximation of
the FP32 matrix C as C ≈ AhBh +AhBl +AlBh +AlBl.
The decomposition of an FP32 matrix A into FP16 matrices
Ah, Al is obtained by [4]:

Ah = toFP16(A) ,

Al = toFP16(A− toFP32(Ah)) . (1)

This work was partially supported by the PEPR IA HOLIGRAIL project of
the Agence Nationale de la Recherche, ANR-23-PEIA-0010 and the European
High- Performance Computing Joint Undertaking (EPI SGA2)

The toFP16() operation converts each FP32 element to
FP16. Likewise, toFP32() converts each FP16 element to
FP32.

This approach has several drawbacks:
1) The dynamic range of the FP16 representation leads to

extreme precision losses for large FP32 values [4], since
the 8-bit exponent of the FP32 representation is larger
than the 5-bit exponent of the FP16 representation. In
other words, (1) often over/underflows.

2) Even if the FP32 multiplicands fit in the dynamic range
of the FP16 format, there is still a loss of precision as the
number of bits in two FP16 significands (2× (10 + 1))
is strictly less than in an FP32 significand (23 + 1). In
other words, (1) is usually inexact.

3) An additional loss of precision arises from the addition
of subproduct matrices AhBh, AhBl, AlBh, AlBl in
FP32 arithmetic, which in the case of NVIDIA Tensor
Cores only supports round to zero [4].

4) The explicit decomposition of the FP32 multiplicand
matrices A,B into the FP16 matrices (Ah, Al, Bh, Bl)
increases the complexity of application software.

A solution to issues 1 and 2 is to use triple-BF16 [10], but
it makes issues 3 and 4 worse. The motivation of the present
work is to address all these drawbacks in hardware.

B. Contributions
This paper presents the architecture of a fused Dot Prod-

uct Add (DPA) operator that targets both the mixed-precision
operations used by machine learning and the FP32 linear
operations used in numerical computing. The main enabler is
the definition of an intermediate floating-point format called
E9S12 (9 exponent bits, 12 significand bits), which is used
inside the operators to represent the FP16 or BF16 multipli-
cands, and also enables an exact double-word decomposition
of FP32 multiplicands.

X0

Y0

X1

Y1

X2

Y2

X3

Y3

X4

Y4

X5

Y5

X6

Y6

X7

Y7

X8

Y8

X9

Y9

X10

Y10

X11

Y11

X12

Y12

X13

Y13

X14

Y14

X15

Y15

Z

Uh
0 Uh

0 U l
0 U l

0 Uh
1 Uh

1 U l
1 U l

1 Uh
2 Uh

2 U l
2 U l

2 Uh
3 Uh

3 U l
3 U l

3

V h
0 V l

0 V h
0 V l

0 V h
1 V l

1 V h
1 V l

1 V h
2 V l

2 V h
2 V l

2 V h
3 V l

3 V h
3 V l

3

Z

Fig. 1. FP16 dot product of size 16 R = Z +
∑

Xi × Yi (top), used as an
FP32 dot product of size 4 (bottom).

73

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00021

On the implementation side, the starting point is a correctly
rounded fused DPA operator with FP16 multiplicands and
FP32 addend. This operator is extended to support E9S12 mul-
tiplicands, as this also enables the use of BF16 and FP32 multi-
plicands. The FP32 multiplicands are decomposed in hardware
as double-E9S12. The resulting operator is still correctly
rounded for FP16 multiplicands, and is IEEE compliant when
emulating an FP32 Fused Multiply Add (FMA) operator. The
proposed operator is not only faster, but also more accurate
than software solutions based on decompositions of FP32
multiplicands into pairs of FP16 or BF16 numbers.

Specifically, for an integer N , let (Xi)i∈[0,4N−1],
(Yi)i∈[0,4N−1] be FP16 numbers, Z and R be FP32 numbers.
The proposed DPA operator computes the sum of a dot product
of Xi, Yi and the addend Z with a single rounding ◦:

R = ◦(X0 × Y0 + . . .+X4N−1 × Y4N−1 + Z) .

This requires an internal accumulator slightly larger than
80 bits (see Section IV-B). If the inputs (Xi)i∈[0,4N−1],
(Yi)i∈[0,4N−1] are BF16 numbers, the same precision is used
to compute their dot product. This process and the correspond-
ing truncation is noted �. The DPA operator then computes

R = ◦(�(X0 × Y0 + . . .+X4N−1 × Y4N−1) + Z) .

Finally, the same DPA operator may compute, for FP32
numbers (Ui)i∈[0,N−1], (Vi)i∈[0,N−1],

R = ◦(�(U0 × V0 + . . . UN−1 × VN−1) + Z) .

This operator provides the building block of a large pipelined
MMA accelerator, the details of which are beyond the scope
of this work.

C. Outline

This paper is organized as follows. Section II discusses
background and related work. Section III introduces the inter-
mediate format that supports the proposed operator features.
Section IV describes the proposed DPA operator architecture
and variants. Section V presents validation details and synthe-
sis results. Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

A. Double-Word Floating-Point Arithmetic

A double-word number [11] X is defined as the unevaluated
sum of two floating-point numbers Xh and X l such that X =
Xh + X l and Xh = ◦(X) using round to nearest. Thus X l

represents the signed rounding error of X: X l = X − ◦(X).
The exact result of floating-point additions or multiplica-

tions can be represented as a double word, which is useful for
error-free transforms [8]. Hardware operators that input two
floating-point numbers and output the exact sum or product
as a double word have been studied in [12].

In a binary floating-point format with p bits for the fraction,
the significand has p+ 1 bits thanks to the implicit bit. Inter-
estingly, a double-word decomposition can always represent
at least 2p+ 3 consecutive bits: p+ 1 bits for Xh, p+ 1 bits
for X l, and an extra bit encoded in the sign of X l as follows:

S E F

FP32

BF16

FP16

TF32

Fig. 2. Floating-point formats supported by NVIDIA Tensor Cores [13].

• If X was a midpoint between two exact floating-point
values, then only p + 2 bits are needed to represent its
significand.

• Otherwise, X l is strictly smaller than the half-ulp [8] of
X , therefore there is a gap of at least 1 bit between Xh

and X l.

B. Multiword Techniques for NVIDIA Tensor Cores

Tensor Cores in NVIDIA GPGPUs are mixed-precision
fused MMA units [4]. They multiply matrices with FP16
elements and add the products to a matrix with FP32 elements.
Since the NVIDIA Ampere architecture, they also support
other multiplicand formats, including BF16 and TF32 [13],
a combination of FP16 and BF16 formats (Fig. 2).

Although designed to accelerate deep learning kernels,
Tensor Cores are also used in numerical analysis to improve
the performance of matrix multiplications in FP32 arithmetic.
One approach is to rely on iterative refinement techniques [14],
while others adapt multi-word arithmetic techniques. In this
setting, the TF32 format is appealing because it has the
same exponent size as the FP32 format. This alleviates the
dynamic range problem of double-FP16 decompositions of
FP32 numbers. However, the limited accuracy of double-FP16
decompositions remains with double-TF32 decompositions.

C. Relevant Previous Work in Hardware Floating Point

a) Floating-Point Addition: The classic way to compute
a floating-point addition of two numbers is to align the
significands on the one with the largest magnitude [15]. The
size of the adder is about the size of a significand. The
significand with the smallest magnitude is shifted right relative
to the largest one, with the bits shifted out ORed into a sticky
bit for further rounding. After the addition, a leading zero
count (LZC) and a second shift are needed for the possible
renormalization of the result.

b) Dot product in a Long Accumulator: For a sum of
many terms, the Long Accumulator (often referred to as a
Kulisch accumulator) was proposed as a way to avoid the
error due to shifted-out bits [16], [17]. It can also be extended
to accumulate the exact products in a dot product, thus also
removing rounding errors due to floating-point multipliers.
The exact dot product is converted back into a floating-point
number only at the end of the computation.

A Long Accumulator large enough to hold exact dot prod-
ucts requires ≈ 4200 bits for FP64 numbers and ≈ 550
for FP32 numbers. Early Long Accumulators were iterative,
accumulating one product per instruction [16], [17]. The
corresponding large fixed-point addition can be sped up thanks

74

to parallel execution [18]. A two’s complement, high-radix
carry-save representation of the accumulator allows for high
frequency operation at low hardware cost [19].

With FP16, the size of the Long Accumulator is only 80
bits, and it becomes an efficient way to implement a mixed-
precision FP16×FP16+FP32 Fused Multiply and Add (FMA)
[20]. This insight was also applied to a dot product operator
in [21], where several FP16 products are computed in parallel
and accumulated into an FP32 number every clock cycle.

For even smaller formats such as FP8, a Long Accumulator
is the best option to implement dot product operators [22],
[7]. For ranges larger than FP16, an option is to compress the
redundant parts of the Long Accumulator [23], [24] while still
ensuring correctly rounded dot product computations.

c) Other dot product implementations: For z = ◦(x0 ×
y0+x1×y1), the two products can simply be computed in par-
allel and added as a floating-point sum of two numbers [25].

Another operator [26] implements the operation z =
◦(◦(x0 × y0 + x1 × y1) + ◦(x2 × y2 + x3 × y3)) with all
intermediate roundings as one instruction. This dot product
operator also computes multiple products in parallel.

The MMA units of mainstream GPUs [4], [5], [6], [27],
[28] use a variant of the floating-point addition architecture:
All products are aligned relative to the one with the largest
magnitude then added to a floating-point accumulator that can
be of an arbitrary size, the popular choice being 24 bits.

D. Baseline Technique for the Present Work

In the FP16 mixed-precision FMA operator of [20], an FP16
product A×B is first converted to a fixed-point number, which
is then added with correct rounding to an FP32 addend Z.
The fixed-point format that contains all FP16 values has a
Most Significant Bit (MSB) of 30 and a Least Significant Bit
(LSB) of -48, hence the total size 80 bits. The operator of [20]
implements the addition between the FP32 addend and the
fixed-point product in a way that ensures a correctly rounded
result to FP32, with fewer bits than a Long Accumulator
matching the FP32 range (which would be 277 bits from MSB
127 down to LSB -149).

The FP32 addend is first shifted relative to the FP16 accu-
mulator. Fig. 3 (not to scale) summarizes the main alignment
cases in this addition.

• Case 1 in Fig. 3 is similar to the way classic floating-
point addition is computed. The FP32 addend is shifted
relative to the FP16 accumulator and shifted into a sticky
bit if needed (Case 1’).

• In Case 2 of Fig. 3, the FP32 addend has a larger exponent
than the MSB of the fixed-point FP16 product. The result
of the multiply-add is the FP32 addend, possibly modified
only with a rounding contribution from the fixed-point
product. The alignment of the FP32 addend is limited to
its LSB being one bit larger than the MSB of the FP16
product. As the guard bit stays clear, this allows for a
correctly rounded sum.

The two numbers are added, and the FP32 exponent is used
as the reference exponent for the result.

Case 1 : FP32 exponent is similar to or smaller than fixed-point MSB
fixed-point product

FP32+

fixed-point product
FP32+

Case 1’ : FP32 exponent is much smaller than fixed-point MSB
fixed-point product

FP32+

fixed-point product
s+

Case 2 : FP32 exponent is bigger than fixed-point MSB
fixed-point product

FP32+

fixed-point product
FP32+

Fig. 3. Addition of an FP32 number to a fixed-point (30, -48) number [20].

The Leading Zero Count (LZC) of the sum (the lower lines
of Fig. 3) is computed, and then there are three cases to
consider to determine the output exponent:

• In case 1, the exponent of the result is 30+ 25−LZC+
FP32bias, where 30 + 25 corresponds to the (unbiased)
weight of the MSB of the sum.

• In case 1’, when the FP16 product is 0 (which can be
determined from the LZC), the FP32 addend which has
been rounded off in the alignment must be restored by
wiring it from the input to the output without modifica-
tion.

• If the exponent of the FP32 addend is larger than 30 +
25+FP32bias, it is used as the result exponent (Case 2).

In the first and last cases, the significand is the normalized
and rounded result of the sum.

The minimum exponent of an FP16 product (-48) is within
the range of normal FP32 numbers. The only way this operator
can produce a subnormal result is if the FP16 accumulator is 0
and the FP32 addend Z is subnormal, so it is wired unchanged
to the output (second case). Thus, there is no need for the
rounding logic to handle subnormal outputs.

This method can be extended to a DPFP16A operator, as
the sum of several fixed-point FP16 products is still a fixed-
point number. The fixed-point format must be extended with a
few bits to absorb possible overflows. This DPFP16A operator
architecture was described in [21].

III. INTERMEDIATE FLOATING-POINT FORMAT

In order to operate on FP16, BF16 and double-word de-
compositions of FP32 multiplicands, we first define an inter-
mediate format to represent all of them and be suitable for
implementation of the downstream calculations. This interme-
diate format is operational, and thus does not need to be frugal
in bits, unlike a storage format. Moreover, conversion to this
format should be easy to implement in hardware.

75

Unpack (wE , wF

X

wIN

1

wE

wF

̸==

0. . . 01. . . 1

Xsig

wF + 1

1 0

1

Xexp

wE

Xsign

Special Flags

=

0. . . 0

Xflags

5

Fig. 4. Unpacking a floating-point number with exponent size wE and
fraction size wF .

A. FP16 and BF16 Multiplicands

Let us first define a generic “Unpack(wE , wF)” operation
(Fig. 4) that expands a floating-point number X with wE

exponent bits and wF fraction bits into its sign Xsign, its
biased exponent Xexp, its significand Xsig, and a vector of flags
Xflags (isnormal, isinf, isnan, issignan, iszero). The implicit
bit is made explicit in the significand, so there is no need
to normalize subnormal inputs, they will just have a non-
normalized significand.

Unpacking an FP16 number requires an Unpack(5, 10),
outputting 5 exponent bits and 11 significand bits. Unpacking a
BF16 number requires an Unpack(8, 7), outputting 8 exponent
bits and 8 significand bits. Therefore, an unpacked format
supporting both FP16 and BF16 numbers requires 1 sign bit,
8 exponent bits, 11 significand bits, and 5 bits for Xflags.

B. Decomposed FP32 Multiplicands

We now introduce a hardware-friendly approach to the idea
of reusing an FP16 / BF16 datapath to compute an FP32 dot
product using double-word arithmetic.

An FP32 number U is decomposed into an unevaluated sum
of Uh and U l, that is, U = Uh +U l. The key to making this
decomposition hardware-friendly is to adapt the intermediate
floating-point format to represent Uh and U l (Fig. 5). Since an

Unpack FP32 into double word
U

Unpack
FP32

32

24

= =

0. . . 0 0. . . 0

12 12

Uh
sig

12

U l
sig

12

Uh
sign U l

sign

Special Flags

Uh
flags U l

flags

8

U l
exp

9

0

+

12

Uh
exp

9

Fig. 5. Unpacking an FP32 number into two E9S12.

Convert FP16 to E9S12

Xsign Xflags

+

124

Xexp

9

Xsig

12

0

Convert BF16 to E9S12

Xsign Xflags

+

12

Xexp

9

Xsig

12

0000

isBFisFP32

Unpack
FP16

Unpack
FP16

Unpack
BF16

Unpack
BF16

Unpack
FP32 into

double word

Convert
FP16 to
E9S12

Convert
FP16 to
E9S12

Convert
BF16 to
E9S12

Convert
BF16 to
E9S12

. . .

U0

32

X0

16

X3

16

X ′
0 X ′

1 X ′
2 X ′

3

00 01 00 01

. . .

00 01

. . .

00 01

U l

1010

Uh

1010

Fig. 6. Unpacking an FP16, a BF16 or an FP32 number into E9S12.

FP32 number has a significand of 24 bits, it should be split into
two significands of 12 bits There is no need for the rounding
trick of Section II-A that requires Uh = ◦(U). Instead, it
is possible to just split the mantissa Usig into its 12 most
significant bits that become Uh

sig, and its 12 least significant
bits which become U l

sig (Fig. 5). Since the significands in the
intermediate format may be not normalized, it is not necessary
either to normalize U l

sig if its leading bit is 0. The signs of Uh

and U l are the same (Fig. 5).
The exponent of U l, U l

exp is the exponent of U minus the
constant 12, which is simple to implement. To ensure that 0
encodes the smallest possible exponent, the intermediate for-
mat uses an encoding with an exponent bias of 139 = 127+12.
Without this bias, negative exponents U l

exp = Uexp − 12 would
appear during the decomposition of subnormal FP32 numbers
and those with exponent Uexp < 12.

Using the bias of 139, the hardware sets U l
exp = Uexp and

Uh
exp = Uexp + 12. If the input U is subnormal, then U l

exp = 0
and Uh

exp = 12. This bias change is compensated later in the
operator when computing the final exponent. However, it
requires one additional exponent bit in the intermediate format.

Special care is needed when dealing with this non-
normalized, non-standard format. For example, U l can be
zero with a nonzero exponent. In general, this approach is
simpler and more energy efficient than implementing (1) which
enforces Uh = ◦(U).

C. The Common Intermediate Format

The intermediate floating-point format that captures all these
multiplicands is called E9S12 in this work. It is encoded using
27 bits: 1 sign bit, 9 exponent bits, 12 bits for the significand
and the 5 flag bits. In other words, the format needed to

76

decompose the FP32 numbers is also large enough for the
unpacking of the FP16 and BF16 numbers as well.

As shown in Fig. 6, the outputs of the BF16 Unpack(8,7)
and the FP16 Unpack(5, 10) are converted to the E9S12 format
by trivial zero extension of the significand and update of
exponent bias.

D. Intermediate Format Applications

The simplest application of E9S12 is to implement an
FP32 Multi-Addition (MA) operator. Each FP32 input U is
decomposed into Uh+U l, each in E9S12 format. The MA2N
operator for E9S12 can be used as a MAN operator for FP32:

R = ◦(Uh
0 + U l

0 + . . .+ Uh
(N−1) + U l

(N−1))

= ◦(U0 + . . .+ UN−1) .

When unpacking the inputs for the Multi-Addition, each FP32
input is decomposed into two E9S12.

However, the main application of E9S12 is to implement a
DPA operator with FP16, BF16 or FP32 multiplicands, FP32
addend and FP32 result. In case of FP16 or BF16, each 16-
bit multiplicand Xi, Yi is unpacked into the E9S12 format
(Fig. 6), and the DP4NA operator computes:

R = ◦(Z +X ′
0 × Y ′

0 + . . .+X ′
4N−1 × Y ′

4N−1) .

In case of FP32 multiplicands U (resp. V) is decomposed
(Fig. 5) into Uh and Ul in E9S12 format such that U = Uh+Ul

(resp. V = Vh + Vl). The product U × V is rewritten as:

U × V = (Uh + V l)× (Uh + V l)

= Uh × V h + Uh × V l + U l × V h + U l × V l .

The DP4NA for E9S12 multiplicands can then be used as
a DPNA for FP32 multiplicands:

R = ◦(Z +
N−1∑
i=0

(Uh
i × V h

i + Uh
i × V l

i + U l
i × V h

i + U l
i × V l

i)

= ◦(Z + U0 × V0 + . . .+ UN−1 × VN−1) .

The unpack circuit for this operator is computed in blocks
of 4 16-bit inputs. A block is shown in Fig. 6 for X . In the
corresponding block for Y , the outputs Y ′

1 and Y ′
2 are switched

compared to this figure.

IV. DOT PRODUCT ADD OPERATORS

We first present in Sect. IV-A a baseline Dot Prod-
uct Add Operator for sums of FP16 products. Here an exact
multi-addition of 81-bit numbers allows for correct rounding.
Then we show in Sect. IV-B how this architecture can be
also used for E9S12 Multiplicands. In this case, the wider
exponent range makes the exact sum of products too costly, so
the architecture keeps the 81-bit sum, but attaches an exponent
to it before rounding it to FP32.

X ′
i,signX ′

i,exp X ′
i,sigY ′

i,signY ′
i,exp Y ′

i,sig

+ ×

Negate

SigiEi

Fig. 7. Product of two floating-point numbers. X′
i, Y

′
i can be FP16 or E9S12.

Unpack FP32

Z

Negate

Shift
Left

Shift
Left

E0 EN−1Sig0 SigN−1

+

81
. . .

Shift
Right

SigN

Compute
Shift Value

EN

130 + log2(N + 1)

Leading
Zero Count

Normalization
Shift
Left

Compute
Exponent

Round

R

Fig. 8. Architecture of a correctly-rounded FP16 Dot Product Add operator.

A. Baseline FP16 Dot Product Add Operator

The baseline operator (Fig. 8) reuses the techniques
of [21] (see Section II-D) to implement the DPA operation
R = ◦(X ′

0 × Y ′
0 + . . .+X ′

N−1 × Y ′
N−1 + Z), where X ′, Y ′

are vectors of numbers in the FP16 format and Z is an FP32
number. The first steps in this DPA operator is the computation
of the significand products X ′

i × Y ′
i and their conversion into

two’s complement fixed-point format. This involves XORing
the signs, adding the exponents, multiplying the significands,
and optionally negating the result (Fig. 7).

The products Sigi are then shifted by their exponent Ei to
obtain their fixed-point value. The sum of these fixed-point
products is computed exactly by a fixed-point multi-adder.
This is where two’s complement is more efficient than keeping
the sign-magnitude representation of the inputs [19].

The sum also includes the contribution of the FP32 addend
Z, which after unpacking has a different format than the
products. The relative shift of the fixed-point sums of products
and the FP32 addend follows the principles of Sect. II-D [20].
Consequently, the conversion from the exact fixed-point sum
to FP32 ensures a correctly rounded result.

B. Dot Product Add Operator with E9S12 Multiplicands

The E9S12 format has a notably larger dynamic range
than FP16, which would involve shifting and accumulating
fixed-point numbers over 540 bits (MSB 254 and LSB -298).

77

This makes an exact fixed-point summation impractical, so it
is replaced by an accurate floating-point summation method
described in Fig. 9.

a) Architecture overview: The products are aligned to
the product with the largest exponent Emax. The accumulator
is reduced to an arbitrary size L, but it is now needed to store
its exponent EAcc.

To avoid loss of precision in the case of partial cancellation,
the sum size should be at least twice the size of the significand
of the result (48 bits for FP32). We chose here the sum size
that enables the computation of a correctly rounded FP16
Dot Product Add: L = 81+ log2(N) bits. This has proven to
be useful for formats with a small dynamic range [7]. Addi-
tionally, this larger accumulator results in additional precision
for BF16 and FP32.

The handling of the FP32 addend is similar to a floating-
point adder: The sum of products is indeed a floating-point
number (possibly non-normalized) of exponent EAcc and of
significand size L. However, contrary to a classic FP adder,
the proposed architecture always shifts the FP32 significand,
since it is much smaller than L. This is actually similar to
the addition performed in the baseline operator [20], with the
notable difference that the shift amount of the addend Z is not
computed from a constant (MSB 30 of the accumulator), but
from the exponent EAcc.

Finally, a Leading Zero Count and a Shift are performed to
normalize the sum and prepare it for the final rounding.

b) Overhead over the baseline FP16 DPA: Compared
to the baseline implementation, the size of the multipliers
increases to 12 × 12 to support E9S12. The accumulation
size of L = 81 is kept to continue to allow for exact FP16
calculations, which implies that the alignment shifters and
adder trees are the same size as in the baseline operator.

Emax must be computed with a comparator tree, it can be
done in parallel with the multiplication of significands. As
the significands are aligned with Emax, it is simpler to use a
right shifter instead of the previously used left shifter. The
significand product Sigi is shifted by Emax − Ei.

c) Subnormal handling: As discussed in Sect. II-D, the
baseline FP16 operator does not need subnormal output logic,
as the range for the FP16 product is much smaller than the
range for the FP32 result.

However, with the E9S12 format, it becomes possible to cre-
ate a subnormal output from normal inputs. Denormalization
logic is added to the operator, where the final shift computation
takes into account the Leading Zero Count and Exponent. The
shift performs an incomplete normalization of the accumulator
so that the significand is correctly aligned for the rounding.

d) Zero detection: When splitting an FP32 number into
two E9S12 numbers, it is important to independently detect
if the two separate parts are zero. Although most flags are
duplicated (i.e. X = +∞ → Xh = +∞ ∧ X l = +∞),
accurately detecting zeros helps catching bugs in the rest of
the operator. The case X l = 0, X ̸= 0 can happen when the
fraction of X is empty on the lower half. The case Xh =
0, X ̸= 0 can happen when X is a small subnormal.

Unpack FP32

Z

Negate

− −

Max

. . .

E0 EN−1

Shift
Right

Shift
Right

Sig0 SigN−1

+

81
. . .

Shift
Right

SigNCompute
Shift Value

EN

130 + log2(N + 1)

Leading
Zero Count

Normalization
Shift
Left

Compute
Exponent

Round

R

Fig. 9. Dot product operator for E9S12.

C. Support of the FP32 Fused-Multiply Add

A dot product operator in the E9S12 format

R = ◦(�(X ′
0 × Y ′

0 + . . . X ′
N−1 × Y ′

N−1) + Z)

as described in the previous section can be used to emulate a
correctly rounded FP32 Fused Multiply-Add (FMA) operation.

If all FP32 products except one Uk×Vk are zero, the result is
correctly rounded. Indeed, the product is split into four terms
Uk × Vk = Uh

k × V h
k + Uh

k × V l
k + U l

k × V h
k + U l

k × V l
k

but those terms have a maximum exponent difference of 24.
Since the size of each term is also 24, the four products
can be exactly represented on 48 bits (the size of the FP32
significand multiplication). Therefore, as soon as L > 48,
no information is lost in the sum, and the product Uk × Vk

is exact. Implementing the method of [20] then ensures the
correct rounding of the addition of Z.

D. Alternative Operator Architectures

a) Accumulator-based architecture for arbitrary size dot
product: When the DPA operator is used to emulate a larger
dot product operator with an arbitrary size D, an alternative
architecture, depicted in Fig. 10, can be used where the
addend is not exposed to the user. It is replaced with an
accumulator that can only be reset to 0. This accumulator is
here considered as a product; for instance, its exponent can
be chosen as the maximum exponent. In this architecture, the
final normalization shift and round components are only used
when the D products have been added, to round the result into
an FP32 number.

Compared to an FP32 addend, this approach increases
accuracy for large dot products: the whole accumulator of

78

− −

Max

. . .

E0 EN−1

Shift
Right

Shift
Right

Sig0 SigN−1

+

81
. . .

Shift
Right

Compute
Shift Value

81 + log2(D)

Leading
Zero Count

Normalization
Shift
Left

Compute
Exponent

Round

R

SigN

LZC

EN

Fig. 10. Dot product operator for E9S12, with loop on the accumulator.

81 + log2(N) bits loops back into the computation instead
of the 24 bits of precision of an FP32 addend.

An FP32 number can still be added by first splitting it as
two E9S12 and inputting as a product with 1. This is trivial in
a single dot product, and takes multiple operations in a matrix
multiply add operator to initialize every addend independently.
This also does not always provide the correctly rounded sum
of an FP32 and an FP16 dot product (consider the case where
this FP32 has a very large or very small exponent compared
to the accumulator exponent, leading to bits being lost in the
shift). For the same reason, this alternative architecture cannot
emulate the FP32 FMA.

In short, this variant is a trade-off, as it improves the overall
accuracy over many iterations but loses precision over one
unique computation. The lack of correct rounding also reduces
predictability in distributed systems and software simulation.

b) Multi-addition operator: The architecture of Fig. 10
can also be used to compute the sum of D FP16 or FP32
terms: R =

∑
Xi. In this case, the floating-point inputs Xi are

unpacked (Fig. 6) and the significands are converted to two’s
complement before being input into the architecture of Fig. 10.

c) Complex matrix multiplication: Mixed-mode matrix
multiplication without addend is also useful to accelerate FP16
Fast Fourier Transforms [29]. This is illustrated with the radix-
4 decimation in frequency butterfly computation [30]:

yl = (xl + xl+N
2
) + (xl+N

4
+ xl+ 3N

4
) ,

zl = ((xl − xl+N
2
)− j(xl+N

4
− xl+ 3N

4
))ωl

N ,

gl = ((xl + xl+N
2
)− (xl+N

4
+ xl+ 3N

4
))ω2l

N ,

hl = ((xl − xl+N
2
) + j(xl+N

4
+ xl+ 3N

4
))ω3l

N .

For a complex FFT of N samples, each of the log4 N
stages executes N

4 independent butterfly computations. With
mixed-mode arithmetic, the {xi} are FP16 complex numbers,

while the {yl, xl, gl, hl} are FP32 complex numbers that are
converted back to FP16 before being stored to memory.

Each radix-4 butterfly can be implemented as a [1, 8]×[8, 8]
real matrix multiplication. A [k, 8]× [8, 8] multiplication per-
forms k simultaneous butterfly computations. Assuming inter-
leaved real and imaginary parts, the extension of the operator
then expands the ω multiplicands as [2, 2] submatrices.

V. EXPERIMENTAL RESULTS

A. Operator Validation

This operator was implemented within the FloPoCo frame-
work [31], which includes MPFR-powered test bench genera-
tion. When the operator takes FP16 multiplicands, a correctly
rounded result is expected. With BF16 and FP32 multipli-
cands, the test case is accepted when the result is a faithful
rounding of the exact result computed in MPFR, and rejected
otherwise. When rejected, the case is checked by hand to
verify that it is not a bug but a normal behavior of the operator.

For every input mode, the FMA is expected to be correctly
rounded: if the number of non-zero product is 1 or less, the
test bench expects a correctly rounded result.

The FloPoCo framework encourages the definition of stan-
dard test cases. Here, these include the tests of negative
zeros and subnormals, as well as debug tests for development
purposes. It also allows for directed random tests, where
the random number generator is biased towards increasing
the probability of some rare but important situations. Here,
directed random tests enable the verification of the FMA mode,
forcing all products but one to be zero. The probability of can-
cellation cases (where products can have very close exponents
and different signs) is also increased. Finally, directed random
tests are also used to increase the frequency of subnormal
inputs and outputs, as this is often an error-prone part of the
operators.

B. Synthesis Results

This section compares DPA operators of size 16 for FP16
and BF16, and thus of size 4 for FP32 multiplicands. The ac-
tual pipelining of the chosen operator will be highly dependent
of its integration in the larger context of a MMA unit. For this
reason, we prefer to compare combinatorial operators, which
are synthesized for one clock cycle at 333MHz to allow for
later pipelining in 3 clock cycles at 1GHz. The operators have
been synthesized with the Synopsys Design Compiler NXT
for the TSMC 4FFC node.

Here, DP16FP16-BF164FP32A is the combined FP16, BF16 and
FP32 operator based on the E9S12 format. It is compared to
an alternative with two separate operators: DP16FP16-BF16A, a
combined FP16 and BF16 dot-product operator dedicated to
16-bit operands, and DP4FP32A, a correctly rounded FP32 dot
product operator with subnormal support as described in [24].
The results of the synthesis are shown in Table I.

The combined operator has a significantly smaller area com-
pared to having two operators DP16FP16-BF16A and DP4FP32A
(-40%), and this is correlated with the leakage power (-39%).

79

Power
Operator Area Leakage Total

(µm2) (nW) (mW)
DP16FP16A [21] 1796 477 1.83
DP16FP16-BF16A 2343 602 2.11
DP4FP32A [24] 1865 476 1.87

DP4FP32A [24] & DP16FP16-BF16A 4208 1078 2.11
DP16FP16-BF164FP32A 2504 657 2.62

TABLE I
SYNTHESIS RESULTS FOR THE DIFFERENT OPERATORS CONFIGURATIONS.

However, total power consumption increases (+24%) as the
operator is less specialized.

VI. CONCLUSIONS

This work is motivated by the extension of a Matrix Multi-
ply Add (MMA) unit, originally designed for deep learning
applications, for use in FP32 numerical applications. The
building block for this MMA unit is a Dot Product Add (DPA)
operator with FP16, BF16 or FP32 multiplicands, an FP32
addend and an FP32 result.

The proposed DPA operator performs a dot product be-
tween vectors of 4N 16-bit floating-point elements or N
FP32 elements. This operator accepts FP32 multiplicands by
decomposing each of them into a pair of numbers represented
in a suitably designed internal format, consisting of 12 bits of
significand and 9 bits of exponent.

This combined FP16, BF16 and FP32 DPA operator re-
moves the need for implementing double-word arithmetic in
software, while providing the full precision and dynamic range
of FP32 arithmetic. In case of FP16 multiplicands and FP32
addend, this operator computes the correctly rounded result.
It also correctly emulates the FP32 Fused Multiply and Add
operation when all product terms except one are zeros.

The synthesis results of non-pipelined operators for a 4nm
technology node show that significant savings in area (-40%)
and leakage power (-39%) are achieved with the combined
DPA operator, compared to the specializing of the two corre-
sponding operators. However, operating the combined operator
increases the total power by 24%.

REFERENCES

[1] IEEE, “754-1985 - IEEE Standard for Binary Floating-Point Arith-
metic,” 10 1985.

[2] Intel, “BFLOAT16 – Hardware Numerics Definition Revision 1.0,” 11
2018.

[3] X. Sun, J. Choi, C.-Y. Chen, N. Wang, S. Venkataramani, V. Srinivasan,
X. Cui, W. Zhang, and K. Gopalakrishnan, “Hybrid 8-bit floating
point (HFP8) training and inference for deep neural networks,” in 33rd
International Conference on Neural Information Processing Systems
(NIPS), 2019.

[4] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter,
“NVIDIA Tensor Core Programmability, Performance & Precision ,” in
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), IEEE, 2018.

[5] H. Kaul, M. Anders, S. Mathew, S. Kim, and R. Krishnamurthy,
“Optimized Fused Floating-Point Many-Term Dot-Product Hardware
for Machine Learning Accelerators,” in 26th Symposium on Computer
Arithmetic (ARITH), IEEE, 2019.

[6] B. Hickmann and D. Bradford, “Experimental Analysis of Matrix Multi-
plication Functional Units,” in 26th Symposium on Computer Arithmetic
(ARITH), IEEE, 2019.

[7] D. R. Lutz, A. Saini, M. Kroes, T. Elmer, and H. Valsaraju, “Fused
FP8 4-Way Dot Product With Scaling and FP32 Accumulation,” in 31st
Symposium on Computer Arithmetic (ARITH), IEEE, June 2024.

[8] J.-M. Muller, N. Brunie, F. de Dinechin, C.-P. Jeannerod, M. Joldes,
V. Lefèvre, G. Melquiond, N. Revol, and S. Torres, Handbook of
Floating-Point Arithmetic, 2nd edition. Birkhauser, 2018.

[9] M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis, “Matrix
Multiplication in Multiword Arithmetic: Error Analysis and Application
to GPU Tensor Cores,” SIAM Journal on Scientific Computing, 2023.

[10] G. Henry, P. T. P. Tang, and A. Heinecke, “Leveraging the bfloat16
artificial intelligence datatype for higher-precision computations,” in
26th Symposium on Computer Arithmetic (ARITH), IEEE, 2019.

[11] T. J. Dekker, “A floating-point technique for extending the available
precision,” Numerische Mathematik, vol. 18, no. 3, pp. 224–242, 1971.

[12] W. R. Dieter, A. Kaveti, and H. G. Dietz, “Low-cost microarchitectural
support for improved floating-point accuracy,” IEEE Computer Archi-
tecture Letters, vol. 6, no. 1, pp. 13–16, 2007.

[13] P. Valero-Lara, I. Jorquera, F. Lui, and J. Vetter, “Mixed-Precision
S/DGEMM Using the TF32 and TF64 Frameworks on Low-Precision
AI Tensor Cores,” in International Conference on High Performance
Computing, Network, Storage, and Analysis, p. 179–186, ACM, 2023.

[14] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham, “Harnessing
GPU tensor cores for fast FP16 arithmetic to speed up mixed-precision
iterative refinement solvers,” in International Conference for High Per-
formance Computing, Networking, Storage, and Analysis, IEEE, 2019.

[15] F. de Dinechin and M. Kumm, Application-Specific Arithmetic, ch. Basic
Floating-Point Operators. Springer, 2024.

[16] R. Kirchner and U. Kulisch, “Accurate arithmetic for vector processors,”
Journal of parallel and distributed computing, 1988.

[17] U. W. Kulisch, Advanced Arithmetic for the Digital Computer: Design
of Arithmetic Units. Springer-Verlag, 2002.

[18] A. Knofel, “Fast hardware units for the computation of accurate dot
products,” in 10th Symposium on Computer Arithmetic (ARITH), pp. 70–
71, IEEE, 1991.

[19] F. de Dinechin, B. Pasca, O. Creţ, and R. Tudoran, “An FPGA-specific
approach to floating-point accumulation and sum-of-products,” in Field-
Programmable Technologies, pp. 33–40, IEEE, 2008.

[20] N. Brunie, “Modified fused multiply and add for exact low precision
product accumulation,” in 24th Symposium on Computer Arithmetic
(ARITH), pp. 106–113, IEEE, 2017.

[21] N. Brunie, “Towards the basic linear algebra unit: replicating multi-
dimensional FPUs to accelerate linear algebra applications,” in 54th
Asilomar Conference on Signals, Systems, and Computers, pp. 1283–
1290, IEEE, 2020.

[22] O. Desrentes, B. D. de Dinechin, and J. Le Maire, “Exact dot product ac-
cumulate operators for 8-bit floating-point deep learning,” in Euromicro
Conference on Digital System Design (DSD), 2023.

[23] Y. Tao, G. Deyuan, F. Xiaoya, and J. Nurmi, “Correctly rounded
architectures for floating-point multi-operand addition and dot-product
computation,” in 24th International Conference on Application-Specific
Systems, Architectures and Processors (ASAP), pp. 346–355, IEEE,
2013.

[24] O. Desrentes, B. D. de Dinechin, and F. de Dinechin, “Exact Fused Dot
Product Add Operators,” in 30th Symposium on Computer Arithmetic
(ARITH), IEEE, 2023.

[25] H. H. Saleh and E. E. Swartzlander, “A floating-point fused dot-product
unit,” in International Conference on Computer Design, pp. 427–431,
IEEE, 2008.

[26] D. Kim and L.-S. Kim, “A floating-point unit for 4D vector inner product
with reduced latency,” IEEE Transactions on computers, vol. 58, no. 7,
pp. 890–901, 2008.

[27] B. Hickmann, J. Chen, M. Rotzin, A. Yang, M. Urbanski, and S. Avan-
cha, “Intel Nervana Neural Network Processor-T (NNP-T) Fused Float-
ing Point Many-Term Dot Product,” in 27th Symposium on Computer
Arithmetic (ARITH), IEEE, 2020.

[28] M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh, “Numerical behavior
of NVIDIA tensor cores,” PeerJ Computer Science, 2021.

[29] B. Li, S. Cheng, and J. Lin, “tcFFT: A Fast Half-Precision FFT Library
for NVIDIA Tensor Cores,” in International Conference on Cluster
Computing (CLUSTER), pp. 1–11, IEEE, 2021.

[30] E. Chu and A. George, Inside the FFT black box: serial and parallel
fast Fourier transform algorithms. CRC press, 1999.

[31] F. de Dinechin and B. Pasca, “Designing custom arithmetic data paths
with FloPoCo,” IEEE Design & Test of Computers, 2011.

80

