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Abstract—The current proliferation of application specific
computer processors brings us many customized computer arith-
metic designs with various precisions and/or numerical proper-
ties. Increasingly, application developers find themselves carrying
out numerical quality assurance. The tools for this task are quite
limited. A common method that requires computed result of a
kernel operation on an example input to be accurate within a
certain threshold is not robust: Not only is a good threshold hard
to establish, but this very approach is fundamentally unreliable,
as computation errors are so sensitive to minute computational
differences that they can be quite different even using numerics
of similar qualities. In this paper, we show that the statistics,
rather than a few isolated instances, of computation errors are so
robust that they can be thought of as signatures of the underlying
numerics. We can therefore compared these statistics against
reference signatures as a more robust quality assurance, or use
observed statistics as diagnostic methods, or incorporate them
during numerics and arithmetic design.

I. INTRODUCTION

Due in no small part to the tremendous computation needs
of AI, the computer industry is witnessing a proliferation
of application specific architectures for accelerators as well
as complete systems such as [1], [2], [3] and [4], to cite
just a few that are of public knowledge. Their underlying
computer arithmetic formats and/or behavior may diverge from
the more familiar and standardized IEEE standard. See [5] and
[6] for example. Even when some parts of these arithmetic
are documented, subtle behavioral idiosyncrasies are often
not (see for example [7]). Consequently, software developers
increasingly need to install safeguards such as operator tests to
ensure the numerical integrity of basic computational blocks
such as products of small matrices. These tests are typically
single-example threshold based (e.g. made convenient by
torch.testing.assert_allclose): One example is
fed to a computational kernel under test. A measure of the
error, that is, the difference between the computed result and a
reference is obtained. The test passes if and only if the measure
does not exceed a predetermined threshold.
The main problem of this approach is that numerical errors
caused by finite-precision arithmetic are very sensitive to
low-level details of a numerical processes. Two processes of
comparable precision executing the same input can result in
noticeably different error measures. So the threshold must
not be too stringent. Nevertheless a threshold that allows for
the maximum possible error among all acceptable numerical
behavior may allow bad numerics to pass as well. Indeed,
anecdotes among many colleagues have a common thread:
these thresholds have been repeatedly increased to accommo-
date new test cases that must made pass lest developments of
other parts of software projects be blocked.

We make the case here that the errors of a well-defined
numerical process on inputs that are also drawn from well-
defined probabilistic distributions are themselves well-defined
stochastic processes. Therefore, statistics – as opposed to a
single sample – of errors can serve as much more reliable
thresholds. To support this argument, this paper explicitly
computes the variance of rounding errors of several common
computation kernels on specific distributions of input values.
The sampled variances of experiments match their correspond-
ing theoretical values so well that the former can be considered
as signatures of the numerics behind.
In the following, Section II relates our work to recent stochas-
tic approaches in the study of rounding errors. Section III
presents the mathematical probabilistic settings and the main
tools we developed for subsequent analyses. We then present
several examples of computational kernels and scenarios of
numerics where we demonstrate that the sampled variances of
errors are just as our theoretical analyses predict. Section IV
considers summation, Section V considers inner and matrix
products, and Section VI considers a special accumulator ar-
chitecture that uses a mixture of fixed-point and floating-point
arithmetic. Section VII summarizes our work and discusses
next steps.

II. RELATED WORKS

Analysis of the effects on computational tasks due to round-
ing errors inherent in finite-precision arithmetic was pioneered
by Wilkinson (see the recently republished classic text [8]).
Higham’s book [9] is a more recent standard reference on
this subject. These standard works try to establish various
worst-case error bounds on a number of algebraic processes
such as summations (c.f. [10]). Nevertheless, worst-case er-
rors are in fact very rarely encountered. A body of more
recent investigations such as [11], [12], [13], [14] establishes
tighter error bounds that are satisfied with high probabilities.
Similar to these works and especially to that of [13], we
model accumulated rounding errors in algebraic processes as
probability distributions. In contrast, however, we focus not on
error bounds but on summary statistics of these distributions
that can be used as signatures of the numerics behind various
computational kernels.

III. BASIC SETUP

Consider drawing a real value x from a normal distribution
with mean 0 and variance σ2: x ∼ N (0, σ2). We examine the
rounding error incurred when x is rounded to IEEE single
precision in the round-to-nearest-even mode. The rounding
error is Rσ

def
= fl(x) − x where fl(x) denotes rounding a
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value x to a floating-point value. As a random variable, it
is reasonable to model Rσ conditioned on |x| falling into the
binary interval Ik

def
= [2k, 2k+1) by the uniform distribution

between [−2kϵ/2, 2kϵ/2] (± half a unit-of-last-place, e.g.
ϵ = 2−23 for single precision). This is equivalent to assuming
the significant bits x from the 25-th bit onward are equally
likely to be either 0 or 1. In mathematical notation:

Rσ

∣∣
|x|∈Ik

∼ U [−2kϵ/2, 2kϵ/2].

The probability density function of Rσ is thus of a
staircase shape, the summations of the density functions of
U [−2kϵ/2, 2kϵ/2] weighted by the pk(σ), the probability of
|x| ∈ Ik when x ∼ N (0, σ2) is the definite integral of
the normal density function ρ(t) = e−

t2

2σ2 /
√
2πσ2 on ±Ik,

exploiting ρ(−t) = ρ(t):

pk(σ)
def
=

2√
2πσ2

∫ 2k+1

2k
e

−t2

2σ2 dt. (1)

This density function of Rσ and a histogram of rounding 105

double-precision x ∼ N (0, 1) to single precision is shown in
Figure 1.

Fig. 1. Error when rounding to FP32: left is the model density function; right
is experimental data

Let us obtain the second and fourth moments of Rσ .
The second and fourth moments of the uniform distribution
U [−1/2, 1/2] are easily obtained as 1/12 and 1/80, respec-
tively. For all practical purposes, pk(σ) is negligible beyond
the exponent range of single precision numbers. We define
F (σ) and G(σ) for ease of subsequent presentations via these
equalities (using E(·) as expectation):

E(R2
σ) =

ϵ2

12

∞∑
k=−∞

22kpk(σ)
def
=

ϵ2

12
F (σ). (2)

Similarly,

E(R4
σ) =

ϵ4

80

∞∑
k=−∞

24kpk(σ)
def
=

ϵ4

80
G(σ). (3)

It turns out one can obtain rather economically the numerical
values of E(R2

σ) and E(R4
σ) at a general σ. First, note that

pk(2σ) = pk−1(σ) by a simple change-of-variable integration
on Equation 1. Consequently,

F0(σ)
def
= F (σ)/σ2 and G0(σ)

def
= G(σ)/σ4 (4)

are defined completely on the interval [1, 2] as F0(2σ) =
F0(σ) and G0(2σ) = G0(σ) for all σ. This periodicity
property for F0 and G0 is easily derived from their definitions
and the property pk(2σ) = pk−1(σ). Second, both F0(σ) and
G0(σ) (cf. Figure 2) can be conveniently computed one time
on a dense subset of [1, 2] using readily available software
packages such as scipy in Python.

Fig. 2. The periodicized second and fourth moment of Rσ , F0(σ) and G0(σ)

We can then substitute F0(σ) and G0(σ) by low-degree
polynomials via for example a least-squares approximation
or a minimax approximation. In our experiments, we used a
degree-6 and a degree-8 polynomial for the second and fourth
moment, respectively. Finally, given any σ > 0, E(R2

σ) =
ϵ2

12 σ
2F0(σ0) where σ0 is σ scaled by the integer power of 2

such that σ0 ∈ [1, 2). Similarly, E(R4
σ) =

ϵ4

80σ
4G0(σ0).

We now enhance our tool set by considering the rounding
error in adding two numbers drawn from zero-mean normal
distributions of different variances σ2

x and σ2
y . If both addends

were real numbers, then the rounding error in summation
is Rσ where σ2 = σ2

x + σ2
y as the sum of two zero-mean

normal distributions is the zero-mean normal distribution with
variance equals to the sum of the addends’ variances. In
practice, we will often add floating-point values x = fl(α)
and y = fl(β) where α ∼ N (0, σ2

x), β ∼ N (0, σ2
y). For

simplicity, we will use the notation x ∼ fl(N (0, σ2
x)) and

y ∼ fl(N (0, σ2
y)). The moments of the rounding error random

variable in general will be slightly higher: just take for example
if we are rounding a number in [1, 2) with only 1 extra bit. The
rounding error is −ϵ/2, 0, ϵ/2 with probabilities 1/4, 1/2, 1/4,
respectively. The second moment is thus ϵ2/8 and not ϵ2/12.
In some special instances, however, the rounding error will
be smaller. For example −2 ≤ x/y ≤ −1/2 leads to the
sum being exact and hence of zero error. Thus, given that the
unrounded sum’s magnitude of two floating-point numbers is
in the binary interval Ik, we refine our model of rounding
error by further conditioning on the ratio x/y. Let Sσ,r denote
the rounding error random variable of adding floating-point
numbers in N (0, σ2

x) and N (0, σ2
y) where σ2 = σ2

x + σ2
y and

r = σ2
x/σ

2
y . This gives us a form

E(S2
σ,r

∣∣|s| ∈ Ik) =
ϵ2

12
22k

∑
ℓ,±

αℓ,±P (
x

y
∈ ±Iℓ)

 ,

The quotient of two normal distribution is a Cauchy distri-
bution [15] distribution and parameterized solely by the ratio
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r = σ2
x/σ

2
y . Consequently, we write

E(S2
σ,r) =

ϵ2

12
F (σ)ϕ(r) (5)

where σ2 = σ2
x + σ2

y . It also suffices to consider σ2
x ≤ σ2

y

as we assume floating-point sum to be commutative. We used
a large sample of mean square errors for E(S2

σ,r) to obtain
numerical values for E(S2

σ,r)/F (σ) at a fixed r, thus arriving
at ϕ(r). We also verified that this value remains unchanged
(up to experimental noise) by changing σ but leaving r fixed.
Similarly,

E(S4
σ,r) =

ϵ4

80
G(σ)ψ(r) (6)

Moreover, by computing this ratio for a fixed σ but on a dense
set of r values in [0, 1], we obtained low-degree polynomial
approximations to ϕ(r) and ψ(r) as well.
For completeness, here are the coefficients we used for F0(σ)
and G0(σ) computed as

∑deg
j=0 cj(σ− 1)j for σ ∈ [1, 2]; ϕ(r)

and ψ(r) are computed as
∑deg

j=0 cjr
j .

F (σ)/σ2 G(σ)/σ4 ϕ(r) ψ(r)
c0 0.54279 1.03445 1.00684 0.99967
c1 0.01827 -0.16159 0.88421 1.94703
c2 -0.13577 -0.85648 -1.91853 -2.43573
c3 0.16304 4.03253 -1.93557 5.04192
c4 0.10800 -2.64662 -0.72735 -16.59014
c5 -0.26253 -7.00256 0.00000 29.25313
c6 0.10911 13.25400 0.00000 -24.83812
c7 0.00000 -8.72614 0.00000 9.10214
c8 0.00000 2.10696 0.00000 -0.84897

Our ability to calculate the second and fourth moments of both
Rσ and Sσ,r allow us to derive the variance and variance-of-
variance of accumulated rounding errors in many controlled
experiments. We will also see that the variance of rounding
errors can effectively serve as signatures of the underlying
numerics that lead to these errors.

IV. VECTOR SUM

Consider the summation of L elements in a simple recursive
manner except with a possible SIMD extension, entirely in
IEEE single precision. Specifically, the summation is a re-
cursive accumulation not necessarily directly of the input ele-
ments but rather of partial sums of a number of elements equal
to the SIMD length. The following pseudo code describes the
numerical characteristic of this summation.

def sgl_simd_sum(x_data, simd_len):
L = len(x_data); s = 0.0; ind = 0;
n_outer = L // simd_len
for _ in range(n_outer):

tmp = 0.0
for _ in range(simd_len):

tmp = tmp + x_data[ind]
ind += 1

s = s + tmp
return s

It is reasonable to expect that summations with different SIMD
lengths give rise to different numerical behavior. Our thesis
is that statistics such as mean squared errors of computation

kernels like this summation can technically serve as signatures
of the underlying numerics as long as the inputs are drawn
in a controlled manner. To support this thesis, we show here
that the total accumulated rounding error in the sum with
different SIMD lengths yield distinct differentiating signatures.
We analyze the rounding error statistics when the inputs are
drawn independently from the normal distribution N (0, 1).
The sampled statistics of different summation configurations
are then shown to indeed offer distinct signatures, all of which
match the theoretical analysis well.

A. Error Statistics Analysis

Let ∆(ℓ) be the random variable of the summation error
with SIMD length ℓ. Assuming ℓ divides L and m def

= L/ℓ. The
summation process consists of m SIMD sum of ℓ elements,
followed by m − 1 summation of the floating-point partial
sums. Each length-ℓ SIMD vector sum consists of ℓ − 1
summations of two floating-point numbers. Thus the entire
summation process consists of m(ℓ − 1) + m − 1 = L − 1
summations of a floating-point number pair in fl(N (0, σ2

x))
and fl(N (0, σ2

y)) of various values of σ2
x and σ2

y .
Consider first the length-ℓ SIMD sum. Generically, it is of the
form

a0 = y0; ai = fl(ai−1 + yi), i = 1, 2, . . . , ℓ− 1.

Because each yi ∼ fl(N (0, 1)), the ℓ − 1 error random
variables are modeled by Sσi,ri where σi =

√
1 + i, and

ri = 1/i, for i = 1, 2, . . . , ℓ−1. After the length-ℓ SIMD sums,
we have m floating-point numbers zj , j = 0, 1, . . . ,m−1 and
the simple recursive sum of these partial sums follows

b0 = z0; bi = fl(bi−1 + zi), i = 1, 2, . . . ,m− 1.

Because each zi ∼ fl(N (0, ℓ)), the m − 1 error random
variables are modeled by Sσi,ri where σi =

√
(i+ 1)ℓ and

ri = 1/i, i = 1, 2, . . . ,m− 1. The total summation error ∆(ℓ)

is of the form

∆(ℓ) = τ1 + τ2 + · · ·+ τL−1

where each τj is of the form Sσj ,rj for the specific σj and
rj described above. Furthermore, it is reasonable to assume
mutual independence of these τjs. As IEEE rounding is
unbiased, E(τj) = 0 and hence

Var(∆(ℓ)) =
∑
j

E(τ2i ), (7)

which is ϵ2/12 times

m

ℓ−1∑
i=1

F (
√
1 + i)ϕ(1/i) +

m−1∑
i=1

F (
√
(1 + i)ℓ)ϕ(1/i). (8)

We can also obtain the variance of ∆2
(ℓ). Recall that the anal-

ysis on ∆(ℓ) shows that it is the sum of random variables τi’s
each of which is the rounding error in summing two floating-
point numbers distributed in N (0, σ2

x) and N (0, σ2
y), σ

2
x ≤ σ2

y .
We also obtained that E(τ2i ) and E(τ4i ) as F (σ)ϕ(r) and
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Fig. 3. Illustration of using observed mean square error as a signature of the underlying numerics. Top experiment is in IEEE single precision. The bottom
experiment using IEEE FP16.

G(σ)ψ(r), respectively, where σ2 = σ2
x + σ2

y and r = σ2
x/σ

2
y .

By definition,

Var(∆2
(ℓ)) = E(∆4

(ℓ))− E2(∆2
(ℓ)).

By multinomial expansion, we have

E(∆4
(ℓ)) =

∑
i

E(τ4i ) + 12
∑
i<j

E(τ2i )E(τ2j )

because expectation terms with odd powers of τi are 0.
Similarly

E2(∆2
(ℓ)) = (

∑
i

E(τ2i ))
2

=
∑
i

E2(τ2i ) + 2
∑
i<j

E(τ2i )E(τ2j )

Thus

Var(∆2
(ℓ)) =

∑
i

(E(τ4i )− E2(τ2i )) + 10
∑
i<j

E(τ2i )E(τ2j ).

(9)
Suppose we have N samples of ∆2

(ℓ): ∆
2
(ℓ),i, i = 1, 2, . . . , N

and assuming N is large enough that the Central Limit
Theorem is applicable, then

1

N

N∑
i=1

∆2
(ℓ),i ∼ Var(∆(ℓ)) +

σ√
N

N (0, 1), (10)

where σ2 = Var(∆2
(ℓ)). The standard deviation of the sampled

variance using N samples is σ/
√
N . Thus, we can make an

assessment such as: if the underlying sum is using SIMD
length of ℓ, then with about 95% chance we expect the
observed mean-squared error to be within 2σ of the theoretical
variance of the error.

B. Experimental Corroboration

We demonstrate that the experimental data match the theory
well and that the former can indeed serve as a signature of
its underlying numerics. We set L = 64 and for each SIMD
length of ℓ = 1, 2, 4 we draw N = 104 random length-L
vector x = [x0, x1, . . . , xL−1] each element of which comes
from fl(N (0, 1)). The error of the computed sum is simply its
difference from an accurate sum obtained by up-conversion of
x to double precision followed by straightforward summation.
So for each SIMD length ℓ, we collected N samples ∆(ℓ),i,
i = 1, 2, . . . , N of the total accumulated error of the sum-
mation process. Figure 3 shows the histograms and relevant
metrics of the accumulated error using different SIMD lengths.
In particular, the experimental values

∑N
i=1 ∆

2
(ℓ),i/N match

the theoretical values given by 8 and they are also well within
two standard deviations from each other, which we would
expect with high likelihood as suggested by Equation 10.

C. General Summation

As a final example for summation, consider the general
summation stated in [9] as Algo 4.1 (Figure 4).

We fix an order of summation by creating an ordered list
of n − 1 pairs of distinct indices (i, j) each from the set
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S := [x_1, x_2, ..., x_n]
for k = n, n-1, ..., 2

pick distinct i, j from {1,2.,,,.k}
a := S[i], b := S[j], c := fl(a+b)
delete S[i], S[j] from S; append c to S
// S is now a list of length k-1

return S[1]

Fig. 4. General Summation

{1, 2, . . . , k} from k = n, n−1, . . . , 2. The numerics behavior
is determined once the order is fixed. Furthermore, the numer-
ical signatures are easily computable for the fl(N (0, 1)) input
distributions. This is because from the summation order we
know the distributions a ∼ fl(N (0, σ2

a)) and b ∼ fl(N (0, σ2
b ))

of each of the two addends of the n − 1 floating-point
additions. The second and fourth moment are thus modeled
by F (σ)ϕ(r) and G(σ)ψ(r) where σ2 = σ2

a + σ2
b and

r = min(σ2
a/σ

2
b , σ

2
b/σ

2
a). Figure 5 shows the results.

V. INNER PRODUCT AND MATRIX PRODUCT

Consider an inner product “engine” for computing∑L−1
i=0 xiyi by computing a correctly rounded product pi =

fl(xiyi) followed by a SIMD sum as in Section IV on the
vector [p0, p1, . . . , pL−1]. Once again, the variance of the error
in the computed inner product can serve as signatures of the
choice of SIMD length, for example, distinguishing between
SIMD lengths of ℓ = 1, 2, or 4. The main idea is to draw
inputs in a controlled manner.
We used two input distributions. For the first input distribution,
we begin with drawing one vector x = [x0, x1, . . . , xL−1]
where each element is picked uniformly in [1, 2], that is,
xj ∼ fl(U [1, 2]). The vector x is then fixed. Then each inner
product experiment consists of picking a different vector y
where each element is yi = fl(ξi), ξi ∼ N (0, 1)/xi. Thus,
each computed product pi = fl(xiyi) is well modeled by
rounding a real number from N (0, 1) since the unrounded
products generally have twice the number of mantissa bits.
The second and fourth moments of the rounding error are
modeled by F (1) and G(1), respectively. The total error in
this inner product computation consists of the L − 1 error
terms we tabulated for the SIMD summation process, with
the addition of these L errors incurred by rounding xiyi to
pi = fl(xyyi).
The second input distribution consists of first drawing one
vector x = [x0, x1, . . . , xL−1] with xj ∼ fl(U [1, 2]) as
before. Then each inner product experiment consists of picking
different y vectors where every element is from fl(N (0, 1)).
The second and fourth moments for rounding the products
pi = fl(xiyi) are therefore modeled by F (xi) and G(xi),
respectively. The analysis for summation with different SIMD
lengths is easily generalized to where each summand pi ∼
fl(N (0, x2i )). The second and fourth moments of each of
the L − 1 error terms in the summation remain in the form
F (σ)ϕ(r) and G(σ)ψ(r) where the specific values of σ and
r are fully determined by x alone.

Figure 6 shows the results of these two experiments with L =
64 and using N = 104 samples of inner products for each
numerical variant. However, note that the error statistics for
the second input distribution depend on the exact summation
order.
Matrix computations Cm×n = fl(Xm×k Yk×n) are merely m×
n length-k inner products. Let ∆ = Cm×n−Xm×k×Yk×n. If
we set m to be 1, then the first distribution we used for inner
products yields ∆2

1,j , j = 1, 2, . . . , n that are independent and
identically distributed (iid). For a general m, the second input
distributions lead to ∆2

i,j where each row contains in it n iids.

In particular, ∆̃j
def
=

∑m
i=1 ∆

2
i,j for j = 1, 2, . . . , n are also

iids. The signatures of each of these iids are obtainable in the
same way described in this section.

VI. FIXED-FLOAT ACCUMULATOR

Consider an accelerated summation unit via nonstandard
arithmetic. In standard floating-point arithmetic, summing ℓ
floating-point numbers requires ℓ − 1 pairwise floating-point
additions thus needing ℓ−1 alignments, that is, shifting of the
operands’ mantissas based on exponent differences. Moreover,
the summation process is serial in nature as each alignment
is based on the addends’ exponent values, one of which is
unknown until a previous summation is complete.
To accelerate the summing of ℓ floating-point values, one can
employ a hybrid of fixed-point and floating-point arithmetic.
Instead of aligning each addend with the latest partial sum, one
can simply independently align each of the ℓ addends with the
maximum exponent of these ℓ addends. We call this maximum
exponent the alignment exponent. The mantissas with smaller
exponents are right shifted and rounded. Optionally, we can
also retain d ≥ 0 extra bits beyond the least-significant-bit
position of the alignment exponent. The exact sum of these ℓ
aligned values is computed and subsequently rounded to the
underlying floating-point format. Alignment with the largest
exponents of an input argument is a floating-point type of
arithmetic. But once this alignment exponent is obtained, the
computation described here aligns multiple numbers with this
“fixed” most-significant-bit position, and thus offering a type
of fixed-point arithmetic. See Figure 7.
Since the numerics is well specified, the rounding errors are
also well-defined stochastic processes for a fixed distribution
of input values. We support this by computing the variance of
a stochastic model of the rounding errors of this fixed-float ac-
cumulation of ℓ IEEE single-precision numbers x1, x2, . . . , xℓ,
xi ∼ fl(N (0, 1)). We show that the computed variances match
the sampled variance experimentally.
We start with an analysis of the rounding errors. This fixed-
float accumulation incurs two kinds of errors. First, each
element xi and up to ℓ−1 of them can incur a rounding error
if its exponent is smaller than the alignment exponent by more
than d bits. We call this the alignment error. After alignment,
the exact sum of the aligned values must be converted back
to an underlying floating-point format, thus possibly incurring
one rounding error whenever the exponent of this exact sum
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Fig. 5. Illustration of general sum. The first two figures correspond to two randomly generated order. The third order corresponds to a fully parallel sum.

Fig. 6. Illustration of using observed mean square error as a signature of the underlying inner product numerics

exceeds eA − d + 1. We call this the conversion error. We
model each of the two errors in turn.

A. Alignment Error

Let vj be the expected square error of “rounding” j frac-
tional bits to an integer. That is, vj = 1

8 ,
3
32 ,

11
128 , . . . for

j = 1, 2, 3, . . . and ultimately converging to 1/12, assuming
the round-to-nearest mode. Denote the random variable of
alignment error of an addend by ∆A,ℓ, then

E(∆2
A,ℓ) = 2−2(23+d)

∑
ea

∑
j≥1

22eap
(A)
rndj

(ea) vj , (11)

where ea is the alignment exponent of ℓ floating-point addends
and p

(A)
rndj

(ea) is the probability that the alignment exponent

is ea and that j bits need to be rounded off. This p(A)
rndj

(ea)
is determined in turn by two probabilities. The first is our
familiar pk(1) (Equation 1), the probability of |x| ∈ Ik where
x ∼ N (0, 1). For simplicity, we use pk instead of pk(1)
throughout our discussion of the fixed-float accumulator. The
second probability is p̂k

def
=

∑
j<k pk, the probability that

the exponent of x is strictly less than k. From these, we
determine qk,m, the probability that the alignment exponent
for m elements is k. This is the sum of the probabilities of all
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Fig. 7. Given ℓ input floating-point addends, the maximum exponent eA is
determined. Each addend is aligned to eA and possibly rounded off beyond
23 + d mantissa to the right of eA. These aligned addends are summed
exactly, yielding a value of exponent eS . A final “conversion” to IEEE single
precision is then performed. The errors incurred are (1) up to ℓ− 1 rounding
errors during alignment, and (2) the final rounding due to conversion.

possible combinations of the m exponent values where some
of the exponents are exactly k while the rest are strictly less.
Thus

qk,m =

m∑
i=1

(
m

i

)
pikp̂

m−i
k = (pk + p̃k)

m − p̂mk . (12)

We use Equations 1 and 12 to compute

p
(A)
rndj

(ea) = qea,ℓ−1 pea−d−j ,

which then allow us to compute E(∆2
A,ℓ) using Equation 11.

Moreover, E(∆4
A,ℓ) is a straightforward modification of Equa-

tion 11 as

E(∆4
A,ℓ) = 2−4(23+d)

∑
ea

∑
j≥1

24eap
(A)
rndj

(ea)wj (13)

where wj is the 4-th moment of error when rounding j
fractional bits to an integer. Equations 11 and 13 allow us
to compute the value of Var(∆2

A,ℓ) as well.

B. Conversion Error

The second error is that of rounding the exact sum of the
aligned values to single precision. We compute the probability
of needing to round j bits off the final sum. Let eA be the
alignment exponent and eS be the exponent of the final sum.
We model the number of bits to be rounded off as j = eS −
eA + d whenever j ≥ 1. This is a slightly simplified model
that assumes the least significant bit of the aligned sum is at
2eA−23−d. Since adding ℓ numbers cannot generate more than
⌈log2(ℓ)⌉ carry outs, we have eS ≤ eA + ⌈log2(ℓ)⌉, and thus
j ≤ d+ ⌈log2(ℓ)⌉.

E(∆2
S,ℓ) = 2−46

∑
ea

22ea
⌈log2(ℓ)⌉+d∑

j=1

αea,j , where

αea,j = Prob(eA = ea and eS = j + ea − d) vj

Similarly (cf. Equation 13)

E(∆4
S,ℓ) = 2−92

∑
ea

24ea
⌈log2(ℓ)⌉+d∑

j=1

βea,j where

βea,j = Prob(eA = ea and eS = j + ea − d)wj .

Moreover,

Prob(eA = ea and eS = j + ea − d) =

∫
Ij+ea−d

gea(t) dt,

gea(t) being the density of the aligned sum where the align-
ment exponent equals ea. Recall that the probability of the
alignment exponent of ℓ elements in Equation 12 is

qea,ℓ =
ℓ∑

i=1

(
ℓ

i

)
piea p̂

ℓ−i
ea ,

we have the density gea(t) to be

gea(t) =
ℓ∑

i=1

(
ℓ

i

)
(

i−times︷ ︸︸ ︷
ρea ⋆ · · · ⋆ ρea)(

(ℓ−i)−times︷ ︸︸ ︷
ρ̂ea ⋆ · · · ⋆ ρ̂ea)(t)

where ρea(t) and ρ̂ea(t) are the N (0, 1) Gaussian density
function 1√

2π
e−t2/2 zeroed out on {t|⌊log2(|t|)⌋ ̸= ea} and

{t|⌊log2(|t|)⌋ ≥ ea}, respectively. Their convolutions and∫
Ik
gea(t) for specific values of k can be computed by numeri-

cal convolutions and quadrature (such as using the trapezoidal
rule). Figure 8 shows (ρ1 ⋆ ρ1 ⋆ ρ̂1 ⋆ ρ̂1)(t) which corresponds
to ℓ = 4, two addends’ exponents equal 1 and the two other,
strictly less.

C. Fixed-Float Accumulator
The total error ∆ff incurred in a ℓ-length fixed-float accu-

mulator is the sum of the ℓ alignment errors together with one
conversion error. If αi, i = 1, 2, . . . , ℓ are the alignment errors
and γ is the conversion error, then ∆ff = γ +

∑
i αi. Hence

∆ff is of the form

∆ff = τ1 + τ2 + · · ·+ τℓ+1

and Var(∆ff) and Var(∆2
ff) can be computed as in Equations 7

and 9. Experimentation is easy to set up. For each ℓ = 4, 8, 16
and with N = 104 we draw ℓ ×N single-precision elements
from fl(N (0, 1)), thus obtaining Xℓ×N input values. We align
each column of Xℓ×N with the number of extra bits d set to 2.
Alignment errors are collected from the first row of the aligned
values. The aligned values are summed in double precision
(the sum is thus exact) and then rounded back to single
precision, yielding the result of our fixed-float accumulator.
The difference between this final result and the exact sum of
the aligned values provide samples of conversion error; and
the difference between the final result and the double-precision
sum of the input values is the total error incurred by the fixed-
float accumulator. Table I shows the experimental mean square
(i.e. variances) alignment, conversion and total errors. We also
tabulated the deviations given by (c.f. Equation 10)

deviation =
|observed variance − model variance|√

Var(∆2
ff)/N

.
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Fig. 8. This depicts the density function when 2 inputs have exponent of 1 and two have exponents strictly below 1.

Mean Square Error (Variance): Sampled, Model, Deviation
ℓ = 4 ℓ = 8 ℓ = 16

Alignment 3.18e-17 3.01e-17 1.4 5.24e-17 5.31e-17 0.4 8.16e-17 8.30e-17 0.6
Conversion 2.68e-15 2.73e-15 0.7 5.27e-15 5.32e-15 0.4 1.04e-14 1.06e-14 0.5

Fixed-Float Accumulator 2.82e-15 2.85e-15 0.4 5.81e-15 5.75e-15 0.5 1.20e-14 1.19e-14 0.4
TABLE I

TABULATES FOR AN ℓ-LENGTH FIXED-FLOAT ACCUMULATOR THE OBSERVED VARIANCE, THEORETICAL VARIANCE, AND THEIR DEVIATIONS OF (1)
ALIGNMENT ERROR OF ONE ADDEND, (1) THE CONVERSION ERROR, AND (3) THE TOTAL ERROR (WITH ℓ ALIGNMENT ERRORS)

VII. CONCLUDING REMARKS

This paper demonstrates through specific examples that the
statistics of rounding errors can be used as signatures of the
numerics that gives rise to them. These signatures can be used
in a number of ways.

• Error thresholds for numerical kernel testing: One can
use as signature the variance of error of a reference
implementation whose quality we demand other imple-
mentations to meet. A threshold can be thus set at 3
standard deviations higher than the reference signature.

• Hardware diagnostics: In some situations, software de-
velopers need some reassurance on the numerical char-
acteristics of some hardware components. If high-level
description of the hardware defines the numerics well
but not to the bitwise level, it is likely we can imple-
ment high-level references and obtain its rounding error
signature. In this situation, matching signatures to high
confidence level is the goal.

• Designs exploration: The rounding error signatures can
be used as benchmarks of precisions when exploring dif-
ferent numerics designs especially when crucial kernels
and common input distributions are identified.

We emphasize that we derive the statistics of various kernels
here merely to demonstrate the reliability of these signatures.
These signatures can in general be obtained through actual
sampling on reference implementations of specific numerics
and input distributions. Further studies can examine stochastic
rounding (c.f. [16]) and low precisions arithmetic types such
as 8-bit or 4-bit.
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