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Abstract—Testing a numerical library’s exception handling is
often left to its regression tests. However, designing floating-point
inputs that exercise exceptional behavior is difficult. Further-
more, existing input generation techniques are designed with the
view that any exception-causing input is of interest when most are
unremarkable from the standpoint of exception handling: most
functions should handle exceptions correctly by construction, i.e.,
by returning exceptional values (NaN, ±Inf), due to IEEE 754’s
mandate that most operations propagate such values. To test
library exception handling, we propose an approach which –
given only a set of regression test executables and a set of function
prototypes – cheaply identifies potential failures via exception-
spoofing and then reifies these failures using an off-the-shelf SMT
solver that generates concrete inputs inducing buggy behavior.
We implement this approach in a prototype tool EXCVATE,
present an evaluation that targets 26 BLAS functions across
three implementations, two compilers, and multiple compiler
optimizations, and ultimately identify exception-handling failures
in five functions in multiple BLAS versions.

I. INTRODUCTION

Numerical software is ubiquitous. It is therefore important

to ensure its correctness. High-profile failures of mission-

critical numerical software emphasize this importance [1],

but designing algorithms to be error-free over all possible

inputs is difficult and leads to programs that waste time pre-

emptively checking for special cases that are uncommon in

practice [2, 3]. In light of this, the IEEE 754 Standard defines

five floating-point (FP) exceptions [4]. The correctness of

numerical software is therefore contingent upon responding to

these exceptions in a predictable and consistent way, i.e., Ex-
ception Handling. Because the correctness of such software

is built upon the correctness of its building blocks, it is of the

utmost importance to ensure the soundness of the exception-

handling strategies implemented by numerical libraries.

Three of the five exceptions generate an Exceptional Value
(EV): either ±Inf or NaN. Furthermore, the standard explic-

itly defines most operations on Inf and NaN operands to

support propagation, thus presenting an attractive definition

for a sound exception-handling policy:

Definition 1. When an Overflow, Divide-by-Zero, or Invalid
exception occurs, a sound exception-handling policy notifies
users by either (1) the presence of EVs in the output, or by
(2) some library-specific reporting mechanism triggered by
checking for their presence at some point during the execution.

This is the definition adopted by the reference implemen-

tations for the widely-used LAPACK and BLAS numerical

libraries [5] and is the one we consider in this work. Testing

exception handling can then be framed as an input generation

problem: how can we find inputs that cause exceptions for

which the policy described in Definition 1 is violated?

Many works propose approaches to finding inputs that

cause FP exceptions [6, 7, 8, 9, 10, 11, 12]. However, such

approaches are designed with the view that any exception-

causing input is of interest, i.e., all exceptions are bugs.

This work offers a complementary perspective: if one instead

views exceptions as inevitabilities, the focus shifts to ensuring

the correctness of the mechanisms for exception handling,

i.e., compliance with Definition 1. In such a setting, many

exception-causing inputs become unremarkable: most code
should handle exceptions correctly by construction due to
IEEE 754’s mandate that most operations propagate EVs.
This make existing input generation approaches a poor fit. Our

key insight then comes from separating the input generation

problem into two challenges:

Challenge 1: Finding violations of the exception-handling
policy. Because generating exception-causing inputs is expen-

sive and most exceptions are handled correctly, we leverage

binary rewriting to cheaply spoof mid-execution FP exceptions

in order to check if they are handled according to the policy.

For a given function execution, we identify each instruction

execution that could generate an EV due to an exception and,

for each of them, replay the function execution while over-

writing the write register with EVs to “spoof” the exception.

Challenge 2: Finding concrete inputs that reify the spoofed
exception while preserving the control flow that leads to the
policy violation. For the few cases in which the spoofed

exception is not handled correctly, we formulate SMT queries

that capture the constraints on symbolic FP inputs that reify

the exceptions while preserving control flow and feed them to

an off-the-shelf solver to yield concrete inputs.

Because exception-spoofing is a dynamic testing approach,

we encounter a third challenge:

Challenge 3: Finding representative inputs to bootstrap the
testing. The power of this exception-spoofing approach is con-

tingent upon quality test inputs which capture the conditions

and edge cases that the software might encounter. To this end,

we leverage developer-written regression test binaries.
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By addressing these challenges, we introduce a novel testing

approach which requires no source code. We implement our

approach in the tool EXCVATE (EXCeptional VAlue TEster)

and perform an experimental evaluation targeting 26 functions

from the BLAS, i.e., the Basic Linear Algebra Subprograms

which are the de facto standard low-level routines for linear

algebra libraries. This evaluation targets three BLAS im-

plementations (reference BLAS [13], BLIS [14], and Open-

BLAS [15]) across both GNU and Intel compilers and multiple

compiler optimizations, ultimately revealing five exception-

handling failures in multiple version of the BLAS.

In summary, the contributions of this paper are:
• A novel binary instrumentation based approach to testing

exception handling in numerical libraries using both low-

cost exception spoofing and powerful constraint solving

applied to existing library regression tests.

• An implementation of our approach in the tool EXCVATE.

• An experimental evaluation of EXCVATE over a cross

product of 598 (function, implementation, compiler, op-

timizations) tuples that reveals five exception-handling

failures in multiple versions of the BLAS.

II. PRELIMINARIES

A. Floating-Point Exception Handling in Hardware/Software

Three of the five FP exceptions defined by the IEEE

754 standard generate EVs and are supported in compliant

hardware. These are Overflow, Divide-by-Zero, and Invalid
exceptions. Unlike the Inexact and Underflow exceptions

whose default results incur a graceful degradation that allows

computations to continue unhindered, these three exceptions

result in an abrupt loss of data by generating a NaN or

±Inf. Furthermore, the idiosyncracies of operations on EVs

as defined by the standard can cause unexpected program

behaviors [16]. For instance, trichotomy does not apply in

comparisons involving NaN which evaluate to unordered and

many operations on one or more EVs are themselves defined

to be Overflow or Invalid exceptions, thus resulting in the

propagation of EVs.

At the software level, one can check for the occurence of an

exception by checking for the EVs generated/propagated due

to the mandated hardware behavior described above. While

checking status flags presents an alternative strategy, previous

works note that this is not always possible due to to variability

in hardware [5, 10, 11, 17, 18]. It is also the policy adopted by

the widely-used LAPACK and BLAS numerical libraries [5].

B. SMT Solvers and Symbolic Execution for Floating-Point
Input Generation

In particular, we are interested in FP input generation

techniques that leverage SMT (Satisfiability Modulo Theories)

solvers. SMT solvers are a generalization of SAT (Boolean

Satisfiability) solvers which determine the existence of a sat-

isfying assignment for a set of constraints expressed over a set

of boolean variables. For instance, (A∧¬A) is not satisfiable

but (A ∧ B) is with an assignment of A ← true,B ← true.

SMT solvers allow for more complex expressions interpreted

within some formal theory in first-order logic with equality.

For instance, SMT solvers with the theory of floating point can

reason about constraints like (z = x+y)∧(z is NaN) and yield

a satisfying assignment like x ← NaN, y ← 2.0, z ← NaN or

x ← Inf, y ← −Inf, z ← NaN.

SMT solvers form the basis of symbolic execution which

has been used as a coverage-guided input generation tech-

nique. By interpreting a program’s execution over symbolic

inputs, each program path can then be expressed as a set

constraints over those inputs. An SMT solver can then find

a satisfying assignment of input values for a set of constraints

to reify the execution of the corresponding path. While pow-

erful, scalability is hindered by the exponential number of

solver invocations corresponding to the exponential number

of paths (“path explosion”) [8]. In the following motivating

example, we show how state-of-the-art FP tools leverage the

power of SMT solvers through symbolic execution to generate

exception-causing FP inputs and we show the limitations of

these tools for the problem of testing exception handling.

C. A Motivating Example

We consider the challenge of testing exception handling in

BLAS and LAPACK implementations. In their proposal for a

consistent adoption of the policy described in Definition 1 [5],

the maintainers of the reference implementations discuss the

challenge that input generation presents to thorough testing.

While SMT-based approaches are a natural fit for this, sym-

bolic execution tools with floating-point support [6, 7, 8, 9]

contain a number of limitations. To demonstrate these limi-

tations, we will use symbolic execution to test the reference

implementation of the BLAS function sgbmv which performs

the operation y := αAx+ βy for banded matrices.

First, because the aforementioned tools are all restricted

to C code, we must translate all source code involved in

sgbmv from Fortran to C. Second, for each operation op that

could trigger an Invalid exception, we must manually add the

following instrumentation:

if ( (x op y) != (x op y) ) {...}
z = x op y; // targeted line

In this way, generating inputs that cause Invalid exceptions

is translated to a code coverage task suitable for symbolic

execution – in order to execute the code guarded by the

conditional, inputs must be chosen such that x op y results

in a NaN. Third, because these tools make the simplifying

assumption that the only input is a fixed number of floating-

point scalars, we must simplify the inputs by constructing

a test harness that hardcodes the values of any non-float

variables. Figure 4 describes all inputs for sgbmv. Because the

values of these non-float variables determine the dimensions

of A, X, and Y as well as the banded structure of A, let us

call them parameterizations. Hence, more complete testing re-

quires a symbolic execution search for each parameterization.

Furthermore, since the values that define a parameterization

are dependent on one another and we want to test only well-

formed and representative parameterizations, we perform five-
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AssemblyLocation Disassembly SourceLocation Event EVcount
srotmg_::0x00000008b mulss xmm8, xmm3 bla_rotmg.c:106 G--- 1
srotmg_::0x000000097 movaps xmm9, xmm8 bla_rotmg.c:108 -P-r 2
srotmg_::0x00000009b mulss xmm9, xmm6 bla_rotmg.c:108 -P-r 2
srotmg_::0x0000000a7 andps xmm9, xmm2 bla_rotmg.c:110 -P-r 2
srotmg_::0x0000000b3 ucomiss xmm9, xmm10 bla_rotmg.c:110 ---r 2
srotmg_::0x0000000c3 unpcklps xmm6, xmm8 bla_rotmg.c:113 -P-r 3
...
srotmg_::0x0000000df shufps xmm1, xmm0, 0x55 bla_rotmg.c:113 -P-r 14
srotmg_::0x0000000e3 mulss xmm1, xmm0 bla_rotmg.c:116 -P-r 14
srotmg_::0x0000000e7 movss xmm5, dword ptr [rip+0x65d71] bla_rotmg.c:116 --K- 12
srotmg_::0x0000000ef movaps xmm6, xmm5 bla_rotmg.c:116 --K- 9
srotmg_::0x0000000f2 subss xmm6, xmm1 bla_rotmg.c:116 -P-r 10
srotmg_::0x0000000f6 xorps xmm1, xmm1 --Kr 6
srotmg_::0x0000000f9 ucomiss xmm6, xmm1 bla_rotmg.c:118 ---r 6
srotmg_::0x000000029 xorps xmm0, xmm0 bla_rotmg.c:157 --Kr 3

Fig. 1: An excerpt of an event trace generated by EXCVATE for one of the buggy srotmg cases described in Section IV-B in

which a lack of EVs in both the inputs and outputs mask a number of mid-execution exceptions. The four character Event code

indicates which of four events occurred: EVs were Generated, Propagated, Killed, and/or were present in the read operands.

EVcount describes how many EVs were present globally after the execution of the instruction.

second searches for each unique parameterization used to test

sgbmv in the BLAS regression tests.
Our testing of sgbmv using symbolic execution covered

1,547 parameterizations and took four hours to generate

45,933 inputs. Figure 2 depicts the results of evaluating

sgbmv on these inputs. Notably, only 1.5% of them revealed

an exception-handling failure in which implicit zeroes in the

banded storage format of a “wide” A lead to a failure to

propagate NaNs (See Section IV-B(2) for a full description).
In summary, testing sgbmv via symbolic execution required

non-trivial engineering for compatibility with existing tools

and required four hours of total execution time. Compare

this to our prototype tool, EXCVATE, which implements the

approach presented in this paper: EXCVATE requires only

the binary executables of the library regression tests and

simple text files describing the inputs of the target functions

(Figure 4). Moreover, EXCVATE reaches the same results for

sgbmv for the same 1,547 parameterizations in less than one

minute of total testing time while also generating a detailed

trace for each exception-handling failure that descibes the flow

of EVs through individual instructions (Figure 1).

III. APPROACH

We have implemented our approach in the prototype tool

EXCVATE (Figure 3). EXCVATE takes as input a set of re-

gression test executables and a set of function prototypes. The

Execution Selector chooses a representative subset of function

executions from the regression tests. Then, for each function

execution, the Exception Spoofer identifies potential exception

sites and, for each of these sites, replays the execution while

spoofing an FP exception at the site. Warnings are issued for

any spoofed exceptions that are not handled correctly. Finally,

the Input Generator checks each warning by generating SMT

queries that reify the exception while preserving the control

flow, feeding these queries to an off-the-shelf SMT solver

to determine if the exception failure is feasible, and finally

Fig. 2: A Sankey diagram showing the results of using a rep-

resentative and state-of-the-art FP input generation technique

for testing the exception-handling of the sgbmv function. Four

hours of symbolic execution generated 45,933 inputs; of these,

only 698 (1.5%) reveal an exception-handling failure that was

found by EXCVATE in less than one minute.

generating event traces for any exception-handling failures

encountered from the solver-generated concrete inputs. We

now discuss each component in detail.

Component 1: Execution Selector

Input: TestBin, FuncProtos

Output: SelectedExecutions

1 processedIDs ← ∅;

2 for FuncExec ∈ TestBin do
3 name = getName(FuncExec);

4 if name ∈ FuncProtos then
5 args = getArgs(FuncExec, FuncProtos[name]);

6 id = getID(FuncExec);

7 if id /∈ processedIDs then
8 processedIDs ← id;

9 SelectedExecutions ← (name, args);

The goal of the Execution Selector is to select function
executions that are “interesting” for our testing and to
ignore those that are “redundant”. The inputs are binary
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Fig. 3: An overview of the approach to testing exception handling implemented in the prototype tool EXCVATE.

TRANS c 8 in 1
M i 32 in 1
N i 32 in 1
KL i 32 in 1
KU i 32 in 1
ALPHA r 32 in 1
A r 32 in ${LDA} * ${N}
LDA i 32 in 1
X r 32 in if [ ${TRANS} == N ]; then 1 + ( ${

N} - 1 ) * abs(${INCX}); else 1 + ( ${M} - 1 ) *
abs(${INCX}); fi

INCX i 32 in 1
BETA r 32 in 1
Y r 32 inout if [ ${TRANS} == N ]; then 1 + ( ${

M} - 1 ) * abs(${INCY}); else 1 + ( ${N} - 1 ) *
abs(${INCY}); fi

INCY i 32 in 1

Fig. 4: A prototype file for the BLAS function sgbmv used

for the motivating example in Section II-C. Prototype files

contain a row for each input/output variable describing the

variable name, its type (character, integer, or real), the number

of bits per element, the “intent” for real variables (in, out,

inout, return), and the number of elements.

executables for the library’s regression tests and a set of pro-

totypes for each of the target functions to be tested (Figure 4).

For each function execution for which there is a provided

prototype, the Execution Selector assigns an ID: a hash of the

sorted concatenation of unique basic block addresses executed.

This is because executions taking the same path are equivalent

from the perspective of the testing technique to be described

in the remainder of Section III; this will fall out naturally by

construction. Hence, by using this proxy for path coverage,

we can sort all function executions into equivalence classes

from which single representatives are selected (line 9).

Component 2: Exception Spoofer

Input: SelectedExecutions

Output: Warnings

1 for FuncExec ∈ SelectedExecutions do
2 sites, timelimit = getPotentialExSites(FuncExec);

3 for s ∈ sites do
4 fail = spoofAndCheck(FuncExec, s, timelimit);

5 if fail then
6 Warnings ← (FuncExec, s);

The goal of the Exception Spoofer is to identify pairs
(FuncExec,s) for which, given the control flow induced by

the inputs of FuncExec, an exception at exception site s

would result in an exception-handling failure violating the
policy described in Definition 1. For each selected function

execution, a first baseline execution identifies potential excep-

tion sites s and a time limit for the testing to follow (line 2).

Potential exception sites are instructions for which there exist

FP inputs that could trigger an exception that we can spoof

by overwriting the output with an EV. Each site s is a tuple

(id, n, o, i, j) where id is the ID calculated by the Execution

Selector, n is the symbol name of the containing routine, o
is the instruction’s offset from the containing routine’s base

address, i is the instruction’s execution count for the current

function execution, and j is the index of the instruction’s

output in the destination SIMD register.

For each s, the execution is replayed with instrumentation

to spoof an exception and to check if the policy described in

Definition 1 is respected (line 4). The first property (propaga-

tion to outputs) is checked by inspecting the values of variables

defined as “out”, “inout”, or “return” in the provided prototype.

The second property (a library-specific reporting mechanism)

is checked by instrumenting any error routines whose names

were given as optional inputs to EXCVATE. Any failures result

in warnings (line 6).

Component 3: Input Generator

Input: Warnings

Output: GeneratedInputs, EventTraces

1 for FuncExec, s ∈ Warnings do
2 {q1, q̂1, q2, q̂2} = getQueries(FuncExec, s);

3 for q ∈ {q1, q̂1, q2, q̂2} do
4 sat = SMTsolver(q);

5 if sat then
6 ins = getFPinputs(sat);

7 fail, trace = getEventTrace(FuncExec, ins);

8 if fail then
9 GeneratedInputs ← ins;

10 EventTraces ← trace;

The goal of the Input Generator is to check each warning
from the Exception Spoofer by attempting to reify the
spoofed exception while preserving the control flow that
led to the exception-handling failure. For each site for which

spoofed exceptions were not handled correctly, the execu-

tion+spoofing is replayed with additional instrumentation to

initiate symbolic values for all FP inputs, to collect constraints
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vmulpd xmm1, xmm1, xmmword ptr [rdi+rdx*8]
;( assert ( = xmm1_72_b64_0 ( fp.mul rm xmm1_71_b64_0 ( ( _ to_fp 11 53 ) #b1011111111100000001001...
;( assert ( = xmm1_72_b64_1 ( fp.mul rm xmm1_71_b64_1 ( ( _ to_fp 11 53 ) #b1011111110011000001011...

vaddpd xmm0, xmm1, xmm0
;( assert ( = xmm0_158_b64_0 ( fp.add rm xmm1_72_b64_0 xmm0_157_b64_0 ) ) )
;( assert ( = xmm0_158_b64_1 ( fp.add rm xmm1_72_b64_1 xmm0_157_b64_1 ) ) )

vshufpd xmm1, xmm0, xmm0, 0x1
;( assert ( = xmm1_73_b64_0 xmm0_158_b64_1 ) )
;( assert ( = xmm1_73_b64_1 xmm0_158_b64_0 ) )

vaddsd xmm0, xmm0, xmm1
;( assert ( = xmm0_159_b64_0 ( fp.add rm xmm0_158_b64_0 xmm1_73_b64_0 ) ) )
;( assert ( = xmm0_159_b64_1 xmm0_158_b64_1 ) )
;( assert ( fp.isNaN xmm0_159_b64_0 ) ) <- reifies an "Invalid" exception!

Fig. 5: Example translation from executed assembly to SMT constraints (depicted as code comments following each instruction).

The SMT variable name xmm0_159_b64_0 is interpreted as “the 64-bit quadword at index 0 in the 159th write of register

xmm0”. The expressions prefixed by #b are binary literals, implying the memory operand in vmulpd contains FP data that

is not affected by the program’s symbolic inputs. Integer instructions will generate no constraints. The constraint in the last

line reifies a spoofed exception while the others preserve the control flow.

on those symbolic values that will preserve the control flow,

and to formulate these into SMT queries with the additional

constraint that the EV from the spoofed exception is actually

generated (line 2). See Figure 5 for an example translation

from FP instructions to SMT constraints.

In line 2, these constraints are formulated into four queries:

Input EVs OK No Input EVs
Omit Post-Exception Constraints q1 q̂1
Include Post-Exception Constraints q2 q̂2

Both q2 queries constrain outputs to be non-EVs; however,

in order to do so, they must encode the post-exception control

flow that produces the outputs, thereby excluding the possibil-

ity of inputs that reify the exception while inducing different

but still-failing post-exception control flow. On the other hand,

the corresponding q1 queries omit the post-exception con-

straints. This allows for such a possibility while introducing a

chance of “false positives” where post-exception control flow

induces correct exception handling. Both q̂ queries constrain

the inputs to be non-EVs; if SAT, they yield interesting

cases where normal inputs and outputs mask mid-execution

exceptions entirely.

In line 4, each of these queries is fed to an SMT solver with

the theory of floating point. Note that with respect to the set of

constraints they contain, the queries form a complete lattice

ordered by inclusion with q̂1 ∧ q2 = q1 and q̂1 ∨ q2 = q̂2.

This allows us to short-circuit the evaluation of queries when

starting from bottom. Specifically: if q1 is UNSAT, then all

other queries are UNSAT; if either q̂1 or q2 is UNSAT, then

q̂2 is UNSAT. This is omitted from the above script for brevity.

Whenever the solver returns SAT, the satisfying assignment

of FP values is given as input to the function (line 7) to

generate an event trace like the one in Figure 1 and to filter

out any “false positives” from the q1 queries.

IV. EVALUATION

Our evaluation is designed to answer the following two

research questions:

RQ1 What kind of exception-handling failures, if any,

can EXCVATE reveal in foundational linear algebra li-

braries?

RQ2 What effect do compilers and optimizations have

on exception-handling failures?

A. Setup

Benchmarks & Compilers. We target the BLAS (Basic Linear

Algebra Subprograms). The BLAS are a specification of low-

level routines for common linear algebra operations and are

the de facto standard for such routines. Here, we consider

single-precision versions of the Level 1 and Level 2 BLAS

which perform vector and matrix-vector operations, respec-

tively. We omit functions which do not perform any exception-

prone operations (sswap, scopy) and those which do not

return any FP output or make any error-handling related calls

(isamax). This leaves 26 functions. We test the implemen-

tations provided by the reference BLAS (v1.12) [13] as well

as two high-performance implementations: BLIS (v1.0) [14],

and OpenBLAS (v0.3.28) [15]. These versions are the current

releases at the time of writing. We test each library across

both GNU (gfortran/gcc v11.4.0) and Intel compilers

(ifx/icx v2024.2.0) as well as multiple optimization levels.

This makes for a cross product of 598 (function, library,

compiler, optimization level) tuples.

Hardware. Our evaluation was conducted on a workstation

with a 3.50 GHz Intel i7-3770K and 24 GB of RAM.

Implementation Details. EXCVATE implements the spoofing

of Invalid exceptions and targets serial programs using the

SSE2-SSE4 and AVX SIMD extensions. We exclude function

executions with more than 32 FP inputs to manage scalability;
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Fig. 6: Heatmaps describing the proportion of spoofed exceptions that resulted in exception failures, i.e., “warnings”. Labels

on the y-axis indicate the functions for which warnings resulted in true positives. The x-axis label “-fast” corresponds to the

Intel compiler option -fp-model=fast. The ifx column lacks -O3 sub-columns as that is the default optimization level.

TABLE I: Statistics aggregated by function; true positives are

those warnings which were reified by the Input Generator, i.e.,

at least one of the four corresponding SMT queries was SAT.

Function Name # Spoofs # Warnings # True Positives

sger 4,414 292 132
sgemv 91,098 11,168 636
sgbmv 117,694 4,421 295

srotmg 2,325 788 440
srotm 4,287 227 208

(21 Others) 330,894 9,617 0

(Total) 532,491 23,693 1,711

note that this is the maximum input size used in the most re-

lated works [10, 19]. EXCVATE is implemented using PIN [20]

with CVC5 [21] as its SMT solver.

B. Results

Aggregate statistics are summarized in Table I. EXCVATE’s

Execution Replayer spoofed a total of 532,491 exceptions of

which 23,693 (4.4%) resulted in a warning. Figure 6 depicts

the warning rate across the 598 (function, library, compiler,

optimization level) tuples. This reinforces our assumption

that most code handles exceptions correctly. We also see

differences in warning rates between compilers and a pattern

of increasing warning rates as more aggressive optimizations

are applied. Of the 23,693 warnings, EXCVATE’s Input Gen-

erator component automatically determined 1,711 to be true

positives, i.e., for each of these 1,711, it was able to generate

a concrete input that reified the spoofed exception and which

was then incorrectly handled according to the policy stated in

Definition 1. These true positives occur in 5/26 functions. The

experiments took 12 wall-clock hours, 11 of which were spent

in the Input Generator component in calls to CVC5.

We perform a reduction to equivalence classes based on

the assumption that exception-handling failures resulting from

TABLE II: Summary of manual analyses of true positives.

Functions Affected Cause of Exception-Handling Failure

srotmg, srotm poor design/documentation not accounting for EVs
sgbmv implicit zeroes in the input matrix representation

sger, sgemv compiler optimizations that changed control flow

exceptions in the same source code line are indicative of

the same buggy behavior. This yields 23 classes, a manual

inspection of which led us to the three findings summarized

in Table II and described in more detail here:

(1) In srotmg and srotm, numerous exception-handling
failures indicate that these functions were not designed or
documented with careful consideration for EVs.
srotmg and srotm respectively generate and apply a

modified Givens rotation. EXCVATE generated inputs causing

various exception-handling failures in all tuples. This included

inputs exposing two noteworthy bugs in srotmg: one in

which inputs containing no EVs yielded normal outputs that

were incorrect (relative error > 2×1014) in all tested versions

of the reference BLAS and another in which inputs containing

an Inf resulted in infinite loops in all default builds of

all three libraries. Evidently, these Level 1 BLAS functions

were not designed or documented with careful consideration

for EVs. Because, in the reference BLAS and LAPACK

implementations, srotmg is never called and srotm is called

only once, our discoveries motivated discussions within the

BLAS working group about more careful documentation and

even possible deprecation rather than refactoring.

(2) In sgbmv, implicit zeros in the representation of
banded matrices can cause exception-handling failures, the
first such case documented for the dense BLAS.
sgbmv performs the operation y := αAx+βy for banded

matrices. EXCVATE generated inputs with a “wide” A and a

NaN in x that causes sgbmv exception-handling failures in all

libraries. This is due to implicit zeros in the banded storage
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format of A. In all libraries, sgbmv is optimized to skip multi-

plying implicit zeros with elements of x and assume the output

is zero whereas a naive implementation would propagate any

NaNs in x. This spurred discussions in the BLAS working

group regarding a modification of the exception-handling plan

for the dense BLAS [5] to be consistent with the SparseBLAS

standard [22] in which multiple error-handling options are

provided depending on the desired treatment of implicit zeros.

(3) In sger and sgemv, compiler optimizations change
control flow in the presence of NaNs and cause exception-
handling failures.

sger performs the operation A := αxyT +A. EXCVATE

generated inputs with a NaN in y that cause sger exception-

handling failures in both BLIS and the reference BLAS when

using -ffast-math or -fp-model=fast=2. Inspecting

the source of the reference BLAS reveals the cause. In the

main nested loop, the inner loop is only executed if the

corresponding element in y is nonzero, i.e., it is guarded by

a conditional of the form if(Y[i]!=0). When Y[i] is

NaN, the control flow of the unoptimized and optimized code

diverges at this comparison: the former executes the inner loop

and the EV is propagated to the output as expected while the

latter skips the computations and the EV is lost.

sgemv performs the operation y := αAx + βy for

general matrices. EXCVATE generated inputs with a NaN in x
that cause sgemv exception-handling failures in BLIS when

compiled with -ffast-math or -fp-model=fast=2. In

this case, BLIS source code is not helpful for root-cause

analysis because it is obfuscated by the extensive use of

functional macros. However, inspecting the divergence of the

x86 instructions executed both with and without optimizations

suggests the cause is similar to sger above. A comparison in

the unoptimized/correct version is executed via the instruction

sequence VUCOMISS→JNZ→JNP which executes one jump

if the operands are equal and a different jump in the presence

of NaN. In the optimized/incorrect version, this sequence

becomes VUCOMISS→JZ which jumps to the same location

in both cases. The bug is not present in the reference BLAS

as there are no comparisons to any elements of y.

These two instances concerning sger and sgemv highlight

the interplay of comparison predicates and compiler optimiza-

tions in the presence of NaN; developers who are not carefully

considering this can introduce subtle bugs into numerical code.

Having summarized these three findings, we return now to

the two research questions toward which the design of our

evaluation was oriented:

RQ1 EXCVATE automatically discovered inputs which

caused exception-handling failures in 5/26 functions.

Notably, EXCVATE found srotmg inputs that yielded

relative errors of greater than 2 × 1014 and infinite

loops. For 4/5 functions, exception-handling failures were

only exercisable via function inputs containing EVs. This

highlights the need for more careful exception handling

for exceptions caused by EVs in function inputs.

RQ2 While the exception-handling behavior of the BLAS

functions was consistent across compilers, EXCVATE

discovered inputs for multiple functions that caused con-

trol flow divergence across compiler optimizations that

resulted in exception-handling failures.

V. RELATED WORK

We divide relevant related work into three categories. The

first category is Input Generation. Several works present

approaches based on symbolic execution [6, 7, 8, 9]. While

their optimizations for soundness and scalability vary, they

are all alike in that they reduce the problem of generating

exception-causing inputs to the problem of code coverage

as described in Section II. In particular, Barr et al. [6] use

an SMT solver with the theory of reals and searches the

neighborhood around the solutions for FP inputs. Wu et al. [7]

and Ma et al. [9] trade some soundness for scalabality using

interval arithmetic, interval constraints, and manually-modeled

elementary functions to facilitate a cheaper range-solver. Other

works take a more dynamic approach [10, 12, 23]. FPDiff [23]

performs differential testing between numerical libraries using

multiple means of input generation, one of which involves

EVs in function inputs; while FPDiff triggers discrepancies

with such inputs, the correctness of exception handling is not

discussed. FPBOXer [10] uses Bayesian optimization targeting

GPU binaries while NumFuzz [12] uses grey-box fuzzing

with a custom fitness function and mutation strategy; both

trigger overflow and underflow exceptions. All of these works

focus on simply triggering exceptions, not testing exception

handling as is done with EXCVATE. Testing approaches that

view correctness as the total absence of exceptions can use

the aforementioned tools in an iterative scheme: generate

exception-causing inputs, harden code to prevent triggered

exceptions, repeat until the program under test is sufficiently

“bulletproof”. However, this can come at the cost of perfor-

mance via the development of programs that waste time pre-

emptively checking for special cases that are uncommon in

practice [2, 3].

The second category is Software Designs for Exception
Handling At Runtime. Relevant works include two design

proposals for LAPACK [3, 5]. Both require adding checks in

software but developers must decide where to check and how

often. An answer to this question affects the soundness and

performance of the library. Our tool is orthogonal to design-

ing exception handling, and instead, facilitates automatically

checking the correctness of said design and its implementation.

The third category is Runtime Tools for Exception Handling
During Execution and/or Debugging Post-Mortem. Given a

known exception-causing input, these tools support debugging

the cause. Otherwise, they can run on top of the program

in perpetuity at high overhead cost. FPSpy [24] targets x86

binaries using overloaded fault trapping and status bits; like

the software design approaches, users must decide where to

check and how often. FPChecker [25] (for LLVM-IR), BinFPE

[18]/GPU-FPX [17] (for CUDA binaries), and FlowFPX [26]

(for Julia) all check operation outputs for EVs while differing
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in their supported targets. While these tools facilitate handling

during runtime and/or debugging post-mortem, none of them

are designed to test exception-handling mechanisms.

VI. CONCLUSION

We have introduced a novel binary instrumentation based

approach to testing exception handling in numerical libraries

using both low-cost exception spoofing and powerful con-

straint solving applied to existing library regression tests. We

have implemented our approach in EXCVATE and presented

an experimental evaluation targeting the BLAS over a cross

product of 598 (function, implementation, compiler, optimiza-

tions) tuples that reveals five exception-handling failures in

multiple versions of the BLAS. EXCVATE is available at

https://github.com/ucd-plse/EXCVATE along with instructions

to reproduce the results of our experiments.
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