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Abstract—The double extended precision format is an 80-bit
floating-point format introduced in the 80x87 series of floating-
point processors by Intel. Since the introduction of vector
instructions in the x86 processors, its use has fallen due to speed
concerns. We implement in CORE-MATH the first correctly-
rounded routines for double extended precision. These imple-
mentations use modern microprocessor features and double-
double arithmetic, avoiding x87-specific features, and achieve up
to 2x speedup over state-of-the-art implementations which are
not correctly rounded. This demonstrates that double extended
precision could be viable as a large computational format.

Index Terms—IEEE 754, floating-point, correct rounding, dou-
ble extended format, efficiency.

I. INTRODUCTION

The double extended precision format was introduced in
Intel’s x87 series of floating-point coprocessors. This floating-
point format has a 80-bit encoding: a sign bit, an exponent
encoded on 15 bits, and a significand on 64 bits (with no
implicit leading bit). Featuring excess precision and range
compared to the double precision format (now binary64),
it allowed double precision intermediate computations to be
carried out without excessive accumulation of errors. Except
for some minor encoding quirks, it can be thought of as the
natural extension of the IEEE 754 standard’s binary floating-
point formats to 80 bits. Most C compilers for the x86 and x86-
64 architectures assign double extended precision to the long
double type. Intel later introduced vector instructions in the
x86 architecture to assist multimedia and signal processing
applications. These SIMD extensions offer at most double
precision, but are faster and easier to compile for. They proved
popular and usage of double extended precision dwindled.

Current long double mathematical functions implemen-
tations perform all their calculations in the slow native double
extended format. Most are a thin wrapper around x87 complex
mathematical instructions such as FPSIN or FPEXP2 which
are microcoded, unmaintained, and yield processor-dependent
results. These instructions are slow even compared to naive
computation in the double extended format and their accuracy
has been the object of errata.

A solution against the reproducibility problem is to en-
force usage of correctly-rounded routines. However, prior to
this work, the major correctly-rounded libraries (CRLIBM,
MathLib, LLVM-libm, RLIBM, CORE-MATH) did not offer
any extended double precision support. This is partly because
correctly-rounded routines must compute their result to a

higher intermediate precision. Except for the single precision
format, where using double precision for internal computations
is quite efficient, this is usually achieved by double-word
arithmetic. This technique gives best performance when fused
multiply-add (FMA) is available in hardware; however since
this is not the case for double extended precision on current
processors, it would yield unacceptably slow routines.

Leveraging the fact that double-double arithmetic is more
precise than the double extended format, we implement
correctly-rounded routines using double-double arithmetic in
the critical path. This nearly eliminates x87 usage, allowing
a significant performance boost and could be ported to allow
double extended precision computation on non-x86 architec-
tures.

Another difficulty implementing correctly-rounded routines
is that certifying them traditionally involves looking for the
hardest-to-round cases. This is hard for double extended
precision routines because of the large input space. In this
work, we show that this search can be replaced by a proof
that all cases are sufficiently easy. This allows us to use
more restrictive parameters in our search tools and speeds up
correctness checking.

The contributions of this article are the following: after some
useful routines in §II, we present in §III routines to convert a
double extended number to a double-double representation, to
convert a double-double representation to a 128-bit floating-
point number, and to round such a 128-bit number to a
double extended number. These routines are building blocks
independent from the function to be implemented. Then in
§IV we present a case study for the exponential function,
correctly rounded in double extended precision. Finally, we
present experimental results and conclude in §V.

II. BACKGROUND

A. Correct rounding

For a mathematical function f and a floating-point num-
ber x, the correct rounding is the floating-point number y
which is closest to f(x) according to the given rounding
mode. Correct rounding is a way to ensure portability of
programs and reproducibility of results. For basic arithmetic
operations, IEEE 754 requires correct rounding. For mathe-
matical functions, many people believe that correct rounding
is expensive, but Ziv demonstrated already in 1991—with the
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MathLib library—that it can be computed efficiently [11]. For
more details on correct rounding, we refer the reader to [1].

B. Double-double arithmetic
A “double-double” number is an evaluated sum h + ℓ of

two double-precision numbers. If h = ◦(h + ℓ) with the
rounding mode ◦(·), we say the double-double number is
“normalized”. Normalizing double-double numbers after each
operation simplifies the error analysis, but is expensive: we
usually try to avoid it, still trying to keep a rigorous bound
on the overlap between h and ℓ. For more details on double-
double arithmetic, see [9].

We recall here three main algorithms on double-double
arithmetics: Algorithm ExactMul (resp. FastTwoSum) pro-
duces a double-double number for the product (resp. sum) of
two double-precision numbers (we use here the formulation
from [4]), and Algorithm DMul approximates the product of
two double-double numbers. In the absence of underflow and
overflow, ExactMul is always exact, whatever the rounding
mode. In ExactMul, we denote by ◦(ab − h) the correct

Algorithm 1 (ExactMul)
Input: a, b ∈ F
Output: h, ℓ such that h+ ℓ = ab

1: h← ◦(ab)
2: ℓ← ◦(ab− h)

rounding of ab − h, which can be performed with a fused
multiply-add.

Algorithm 2 (DMul)
Input: ah, aℓ, bh, bℓ ∈ F
Output: xh, xℓ approximating (ah + aℓ)(bh + bℓ)

1: (xh, s)← ExactMul(ah, bh)
2: t← ◦(s+ aℓbh)
3: xℓ ← ◦(t+ ahbℓ)

We will make extensive use of the following lemma.
Lemma 1: Using the notations of Algorithm 2, let

Ah, Aℓ, Bh, Bℓ ∈ R+ be bounds on |ah|, |aℓ|, |bh|, |bℓ| respec-
tively. Let RU be the rounding toward infinity. Let us call

T = RU(ulp(RU(AhBh)) +AℓBh), Xℓ = RU(T +AhBℓ).

Then, assuming no underflow nor overflow, the error of DMUL
is at most ulp(T ) + ulp(Xℓ) + AℓBℓ, and Xℓ is such that
|xℓ| ≤ Xℓ.
Furthermore, we also have |xh| ≤ Xh = RU(AhBh).
Proof: We have |xh| ≤ RU(AhBh) given EXACTMUL. Then
we see that |s| < ulp(xh), so that |s| < ulp(RU(AhBh)).
Given line 2 we get that |t| ≤ T . The rounding error on line 2
is therefore at most ulp(T ). In the same vein, we get that
|xℓ| ≤ RU(T + AhBℓ) = Xℓ so that the rounding error on
line 3 is at most ulp(Xℓ). Since we neglected the term aℓbℓ
from the whole product, we get the claimed error bound.

Still in the absence of underflow and overflow, FastTwoSum
is exact for rounding to nearest, but might not be for directed
rounding modes (see [2], [6] for more details).

Algorithm 3 (FastTwoSum)
Input: a, b ∈ F with a = 0 or |a| ≥ |b|
Output: h, ℓ such that h+ ℓ approximates a+ b

1: h← ◦(a+ b)
2: t← ◦(h− a)
3: ℓ← ◦(b− t)

C. The double extended format

The double extended format is an 80-bit format, with a 1-
bit sign s, a 15-bit exponent e, and a 64-bit significand m.
Apart from special values (NaN, Inf) and subnormal numbers,
the corresponding value is (−1)s · 2e−16383 · m, where m
is interpreted as a number in [1, 2), and always has it most
significant bit set (contrary to the binary32 and binary64
formats, the leading bit is explicit). This format has 11 bits
more precision than binary64, and a larger exponent range,
since it can represent numbers as large as about 216384, and
as small as 2−16445. This format usually corresponds to the C
type long double on x86 and x86-64 processors. In the rest
of this article, since we target such processors, both “double
extended” and “long double” refer to that format.

D. Notations

We write Zp the set of p-bit numbers in two’s complement
notation. We denote Fp the set of p-bit floating-point numbers,
and DD the set of double-double numbers. For x ∈ Fp, we
denote by ulp(x) the unit-in-last place of x [8]. We also
denote ulpq(x) the unit-in-last place of x, considered as a
q-bit number (with unbounded exponent).

III. EVALUATION STRATEGY

Since our aim is to use only double-double arithmetic in
the critical path, we present here routines to convert between
the extended double and double-double representations. These
routines are independent from the function to be evaluated.

A. Conversion from double extended to double-double

The double-double representation has 11 bits for encoding
the exponent, which does not allow representing all double
extended values. Very large and very small inputs thus have
to be handled separately. However, this is usually the first
reduction step of most algorithms computing mathematical
functions anyway. Depending on the function, we discard in-
puts or scale them directly using the exponent as stored on the
stack prior to the routine call. This avoids an x87 FXSCALE
instruction, replacing it by a few integer instructions.

Assuming we reduced to a long double input in the double
precision exponent range, we use the following algorithm:

Algorithm 4 Long double splitting (LDSPLIT)
Input: x ∈ F80

Output: (a, b) ∈ F2
64 such that |b| < ulp(a) and a+ b = x

a← ◦64(x)
b← ◦64(x− F80(a))
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Lemma 2: If |x| ≤ 21024(1− 2−53) and |x| ≥ 2−1011 then
Algorithm 4 is correct.
Proof: The condition |x| ≤ 21024(1−2−53) ensures there is no
overflow computing a. Then we know that |x− a| < ulp(a).
Let m be a’s exponent and n be x’s exponent. Then m = n or
m = n+1. This implies that ulp(a) = 264−53+m−n ulp(x) ≤
212 ulp(x). Moreover, since a and x are integer multiples of
ulp(x), so is x−a. Therefore x−a = k ·ulp(x) for some k ∈
[−212, 212]. Since |x| ≥ 2−1011, ulp(x) ≥ 2−1074. Together
with |x− a| ≤ |x| this ensures that computing b is exact, thus
the correctness of the algorithm.

Except for a final FLD due to System V’s ABI, this
algorithm constitutes our only use of x87 instructions in the
critical path. It compiles to a FLDT,FSTL,FSUBL,FSTPL
dependency chain. In our implementations, integer reduction
computations using x directly from the stack partially hide the
latency.

B. Reconstruction

Near the end of the critical path, we get a double-double
approximation of f(x) as a+ b with |b| < ulp(a). We convert
(a, b) to an intermediate representation q whose significand
has 128 bits, then round q to a long double, checking whether
our error bounds ensure this result is correct in the process.
To convert (a, b) to q, we use Algorithm 5.

Algorithm 5 Computing a 128-bit approximation q

Input: a, b ∈ F64, a = (−1)as(253+am)2ae with as ∈ {0, 1}
and 0 ≤ am < 252, similarly for b

Output: q = (as, qe, qm) ∈ F128 representing
(−1)as2se−127 · qm and approximating a+ b

1: qe ← ae
2: qm ← 2127 + 264+11am + (−1)bs−as(263 +

211bm)264+be−ae

3: if qm < 2127 then
4: qe ← qe − 1
5: qm ← 2qm

return q = (as, qe, qm)

In line 2, the result is rounded to a 128-bit integer by
truncation (if −63 ≤ t := 64 + be − ae < 0, we shift
263 + 211bm by −t bits to the right, and if t ≤ −64,
the contribution of b is simply neglected). Notice that since
|b| < ulp(a), we do not have to handle overflows.

Lemma 3: Assume a and b are normal double precision
numbers such that |b| < ulp(a). Then Algorithm 5 returns q
such that q = a+ b+ ϵ with |ϵ| ≤ 2−126|q|.
Proof: Assume a and b have same sign (bs = as). Then, since
|b| < ulp(a), by summing the (scaled) significands of a and b
with infinite precision, the most significant bit stays that of a.
This remains true in our 128-bit format because we truncate
the expansion. Then, the branch cannot be taken and there
cannot be an overflow computing qm. The correctness is then
straightforward.

Assume a and b have different signs (bs ̸= as). Since |b| <
ulp(a) ≤ |a|/2, qm ≥ 2−1(2127 + 264+11am) ≥ 2−126. If the

branch is not taken, the correctness is obvious. If the branch
is taken, our previous inequality shows that we only need to
shift qe by 1 to obtain a normalized 128-bit representation.
The operation in the branch does not alter qm · 2se−127 which
proves correctness.

The truncated part of b (if any) is less than 1, and is
multiplied by 2 when the branch is taken, thus contributes to
less than 2 compared to qm ≥ 2127 at the end, which proves
the bound on ϵ.

Once we obtain q, we round it to a long double according
to the current rounding mode. We also need to get the dis-
tance to the nearest rounding boundary. We do the following,
assuming q is not in the subnormal range:

Algorithm 6 Rounding a 128-bit number q to long double
Input: q = (qs, qe, qm), r a rounding mode
Output: (y, a) ∈ F64 × Z64 where y rounds q and a is a

scaled rounding error.
1: write qm = mh2

64 +mℓ with 0 ≤ mh,mℓ < 264

2: if r = NEAREST then
3: mℓ ← mℓ + 263 (mod 264)

4: a← mℓ cmod 264 ▷ −263 ≤ a < 263

5: if Cr(mh,mℓ, qs) then
6: mh ← mh + 1
7: if mh = 264 then
8: qe ← qe + 1
9: mh ← 263

10: a← a/2 ▷ rounded towards zero
11: if qe ≥ 16384 then
12: return ((−1)qs∞, a)

13: y ← F64(qs, qe,mh)
14: return (y, a)

Here line 4 reinterprets the bits of mℓ as representing
a signed number and Cr is a predicate deciding whether
(mh,mℓ, qs) has to be rounded away from zero in the current
rounding mode. For directed roundings, this only depends on
qs, whereas for rounding to nearest mℓ also plays a role.

Lemma 4: Assuming qe ≥ −16383 at the beginning of
Algorithm 6, let (y, a) be its output. Let also u = a ·
2−64 ulp64(y). Then y is the rounding of q in the current
rounding mode and u is the signed distance between s and
the nearest rounding boundary, rounded toward zero.
Proof: The rounding procedure is mostly straightforward,
given that we exclude the denormal range. It remains to
show that u is what is claimed. First, assume that there is
no overflow in line 6. We show that u is exactly the signed
distance between q and the nearest rounding boundary.

Assume r is a directed rounding mode. Then when q takes
all possible values between two adjacent 64-bit precision
numbers z− and z+, mh is fixed and mℓ linearly increases
between 0 and 264− 1. When considered as a signed number,
a goes between 0 and 263 − 1 when z− ≤ q < (z+ + z−)/2
and between −263 and −1 when (z+ + z−)/2 ≤ q < z+. It
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is then easy to check that u is appropriately scaled such that
it is as claimed.

If r is rounding to nearest, take z− and z+ as before. Then,
when z− ≤ q ≤ (z− + z+)/2 we see that a goes from −263
to 0. Similarly, when (z− + z+)/2 < q < z+ then a goes
from 1 to 263 − 1. A similar argument to above allows us to
finish the proof when there is no overflow.

The same argument can be adapted to the case where there
is an overflow in line 6: the division by 2 of a explains the
rounding toward zero in the theorem.

The reconstruction phase (Algorithm 6) is a bottleneck for
two reasons:

• The branch in line 5 of Algorithm 6 is not easily
predictable. To check the current rounding mode in order
to compute Cr we use floating-point operations instead
of directly checking the relevant CSRs.

• The System V ABI imposes that long double return val-
ues are passed in a x87 register. Since our computations
are done on the stack, this imposes an FLDT instruction
which is the hottest instruction of our routines.

IV. CASE STUDY: EXPL

We implemented several functions with correct rounding
using the above mentionned techniques. We illustrate here the
usage of our techniques on the example of the expl function
(exponential in double extended format).

We use a truncated Ziv iteration method, with two precision
levels: a fast path using double-double arithmetic and an
accurate path using a 192-bit software ad-hoc format using 64-
bit integer arithmetic. The hard-to-round cases were searched
using BaCSeL (see §IV-C).

A. Fast path

The overall evaluation strategy consists in evaluating ex =
2x/ log 2. The input is first filtered: inputs with |x| ≥ 214 round
either to infinity, to the largest long double number, to +0,
or to the smallest positive subnormal number depending on
rounding mode and sign. By directly checking the exponent’s
representation, this test also catches infinities and NaNs in
the input and correctly deals with them. Similarly, inputs with
|x| < 2−64 round trivially.

After this filter, all inputs easily fit in the double exponent
range. We use Algorithm 4 to split the input x into (xh, xℓ)
exactly. All further computations proceed with double-double
arithmetic using the following pseudocode.

Algorithm 7 Computing expl

Input: x ∈ F64, 2
−64 ≤ |x| < 214

x′ ← REDUCTION(x)
(n, f, y)← SPLIT(x′)
z ← LOOKUP(f)
t← POLY(y)
s← DMUL(t, z)
return RECONSTRUCT(n, s)

Here, SPLIT is a subroutine such that SPLIT(x′) returns
(n, f, y) ∈ Z2 × DD satisfying 0 ≤ f < 220 and such
that n + f/220 + y approximates x′ and |y| ≤ 2−19.999.
Subroutine LOOKUP computes an approximation of 2f/2

20

.
Subroutine POLY is a straightforward polynomial approxima-
tion of 2y . Finally, RECONSTRUCT is a small modification
of the reconstruction phase (§III-B) to correctly round 2n · s
to a long double. It also implements the fast path validity
check knowing Algorithm 7’s error bounds. By isolating the
approximate exponent of the result in n we will see that quan-
tities z, t, f, s comfortably sit inside the representable range
of double-double numbers. Note that LOOKUP and POLY are
independent and can be efficiently pipelined together.

a) Subroutine REDUCTION: We use the following algo-
rithm, where constants Kh,Kℓ are binary64 numbers.

Algorithm 8 Divide by log 2 (REDUCTION)
Input: : x ∈ F64 with |x| < 214

Output: : x′ = (x′
h, x

′
ℓ) approximating x/ log 2

1: (xh, xℓ)← LDSPLIT(x)
2: Kh = 0x1.71547652b82fep+0
3: Kℓ = 0x1.777d0ffda0d24p-56
4: (x′

h, x
′
ℓ)← DMUL(Kh,Kℓ, xh, xℓ)

Lemma 5: The double-double number x′ = x′
h+x′

ℓ returned
by Algorithm 8 satisfies |x′

h| < 214.7, |x′
ℓ| < 2−37.141 and

|x′ − x/ log 2| < 2−88.951.

Moreover, if the value x′
h computed by Algorithm 8 satisfies

|x′
h| < 2−20, then |x′

ℓ| < 2−71.63 and

|x′ − x/ log 2| < 2−123.3.

Proof: From Algorithm 4 we know that |xh| ≤ 214 and |xℓ| <
ulp(x) ≤ 2−39. The constants Kh and Kℓ satisfy |Kh+Kℓ−
1/ log 2| < 2−109.5. Directly applying Lemma 1 (and adapting
the notations), we get

T = RU(ulp(Kh2
14) +Kℓ2

14) ≤ 2−37.873

X ′
ℓ ≤ RU(T +Kh · 2−39) ≤ 2−37.141

|x′
h| ≤ RU(Kh2

14) < 214.7.

Since ulp(2−38) = 2−90, the error of the DMUL call is at
most 2 ·2−90+Kℓ ·2−39. The error due to Kh+Kℓ not being
1/ log 2 is at most |Kh+Kℓ− 1/ log 2| · |x| ≤ 214−109.5. The
total error of the algorithm is thus at most

2−89 +Kℓ · 2−39 + 2−95.5 ≤ 2−88.951.

If |x′
h| < 2−20, necessarily |xh| ≤ t0 where t0 =

0x1.62e42fefa39efp-21, because x′
h = ◦(Khxh), and

if we multiply Kh by t0 + ulp(t0) with rounding towards
zero, we get 2−20. This implies |xℓ| < ulp(t0) = 2−73. Using
Lemma 1 with the improved bounds, we get{

T = RU(ulp(RU(Kht0)) +Kℓt0) ≤ 2−72.827

X ′
ℓ ≤ RU(T +Kh · 2−73) ≤ 2−71.638.

This allows us to show that the total error is at most 2−123.3

in the same way as above.
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b) Subroutine SPLIT: We use a variant of the absolute
splitting of [5] to truncate x′ to a fixed precision 2−20. We
use the “magic” double precision constant C = 3 · 231.

Algorithm 9 Splitting to 2−20 precision
Input: : x′ = (x′

h, x
′
ℓ) with |x′

h| < 214.7 and |x′
ℓ| < 2−37.141

Output: : (n, f, y) such that n+ f/220 + y approximates x′

1: if |x′
h| < 2−20 then

2: return (0, 0, x′)
3: else
4: S ← ◦(C + x′

h)
5: extract (n, f) from S bitwise
6: r ← ◦(x′

h − ◦(S − C))
7: (yh, yℓ) = FASTTWOSUM(r, x′

ℓ)
8: return (n, f, (yh, yℓ))

In line 5, f is formed as an unsigned integer by the 20 low
bits of S and n is extracted from the 16 following upper bits
interpreted as a two’s complement integer.

Lemma 6: Algorithm 9 returns (n, f, y) such that

x′ = n+
f

220
+ y + ϵ

with n, f integers, 0 < f < 220, |y|, |yh| < 2−19.999, |yℓ| ≤
2−71.63 and |ϵ| < 2−87.922.
Proof: If |x′

h| < 2−20, we have yh = x′
h and yℓ = x′

ℓ, and the
statement follows from Lemma 5, with ϵ = 0. Assume now
|x′

h| ≥ 2−20, thus we use the else branch of the algorithm.
Since |x′

h| < 214.7, we have 232 ≤ C + x′
h < 3 · 231 + 214.7,

thus S lies in the binade [232, 233), with ulp(S) = 2−20. We
thus have S = C + x′

h + τ with |τ | < 2−20, the sign of τ
depending on the rounding mode. In line 5, we read the bits of
x′
h + τ as a two’s complement integer, where |x′

h + τ | < 215:
S = C + n+ f · 2−20. By Sterbenz’s lemma, the subtraction
S−C is exact, thus r = ◦(x′

h− (S−C)). Since |x′
h| ≥ 2−20,

ulp(x′
h) ≥ 2−72, thus −τ = x′

h−(S−C) is an integer multiple
of 2−72, with |τ | < 2−20, thus x′

h− (S−C) is exact too, and
r = −τ = x′

h−(n+f ·2−20). Since the extraction of (n, f) is
exact, and likewise for the computation of r, the only rounding
error might occur in the FASTTWOSUM call, which we denote
by ϵ: r+x′

ℓ = yh+yℓ+ϵ. It yields x′
h+x′

ℓ = n+f ·2−20+y+ϵ.
Now let us bound |ϵ| and |yℓ|. If |r| ≥ |x′

ℓ|, the precondition
of FASTTWOSUM is fulfilled, and using Theorem 6 of [6],
the FASTTWOSUM error is bounded by 2−105 ufp yh. Since
yh = ◦(r+x′

ℓ) with |r| = |τ | < 2−20 and |x′
ℓ| < 2−37.141, this

yields |yh| < 2−19.9999 and |ϵ| ≤ 2−125. If e is the rounding
error in yh = ◦(r+x′

ℓ), i.e., yh = r+x′
ℓ−e, we know (see for

example the proof of Theorem 1 in [2]) that yℓ = ◦(e); since
|e| < ulp(yh) ≤ ulp(2−19.9999) = 2−72, it yields |yℓ| ≤ 2−72.

If |r| < |x′
ℓ|, the precondition of FASTTWOSUM is not

fulfilled. However, it is known (see for example Theorem
4.3 from [9]) that FASTTWOSUM behaves normally when |r|
and |x′

ℓ| lie in the same binade. Thus since |x′
ℓ| < 2−37.141,

the precondition of FASTTWOSUM is not fulfilled only when
|r| < 2−38. In that case Theorem 2 of [2] yields |ϵ| <
3 · 2−53|yh|. It gives |yh| ≤ ◦(2−38 + 2−37.141) < 2−36.507,

and |ϵ| < 3 · 2−89.507 < 2−87.922. Then since yh = r+x′
ℓ+α

with |α| < ulp(yh) ≤ 2−89, and yh + yℓ + ϵ = r+ x′
ℓ, we get

yℓ + ϵ = −α, thus |yℓ| < |ϵ|+ |α| < 2−87.922 +2−89 < 2−72.
Since |yh| < 2−19.9999 and |yℓ| < 2−72, we have |y| <

2−19.9999 + 2−72 < 2−19.999.

Now if we use the output x′ of Algorithm 8 in Algorithm 9,
combining the bounds of Lemma 5 and Lemma 6, we get
when |x′

h| ≥ 2−20:

|n+
f

220
+ y − x

log 2
| < 2−87.346,

and when |x′
h| < 2−20 since ϵ = 0 in Lemma 6:

|n+
f

220
+ y − x

log 2
| < 2−123.3.

By picking alternate values of C, Algorithm 9 can be
adapted to different scales.

c) Subroutine LOOKUP: Tabulating the whole 220 pos-
sible values for 2f/2

20

would be prohibitively expensive. We
split f in base 32 as f =

∑3
i=0 fi · 25i with 0 ≤ fi < 32:

2f/2
20

=
3∏

i=0

2fi/2
20−5i

.

For j = 0...3, let tj be a table of double-double values
approximating 2x/2

20−5j

to nearest for x = 0...31. We use
the following algorithm:

Algorithm 10 LOOKUP
Input: : integer f ∈ [0, 220 − 1]
Output: : z = (zh, zℓ) approximating 2f/2

20

split f =
∑3

i=0 fi2
5i bitwise

ai = (aih, aiℓ)← ti[fi] for i = 0...3
b = (bh, bℓ)← DMUL(a0, a1)
b′ = (b′h, b

′
ℓ)← DMUL(a2, a3)

z ← DMUL(b, b′)

Since each double-double needs 16 bytes of memory, the
total lookup table size is only 16 × 32 × 4 bytes, or 2kB.
Moreover the tables are easily cache-aligned. We precomputed
the tables tj using SageMath.

Lemma 7: Subroutine LOOKUP’s result z = (zh, zℓ) yields∣∣∣z − 2f/2
20
∣∣∣ ≤ 2f/2

20

· 2−100.540.

Moreover |zh| < 2 and |zℓ| < 2−49.271.
Proof: Since the total table size is 220, we can do an
exhaustive check against MPFR for each rounding mode.
Then, the maximal error can be shown to be between v =
0x1.5ff27a94p-101 (for rounding toward zero or down-
ward) and v+2−130. This exhaustive check also provides the
maximum values of |zh| and |zℓ|.
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Q = 1

+ (0x1.62e42fefa39efp-1

+ 0x1.abc9e3b369936p-56) · y
+ 0x1.ebfbdff82c696p-3 · y2

+ 0x1.c6b08d704a1cdp-5 · y3.

Fig. 1. Degree-3 polynomial approximating 2y for |y| < 2−19.9999.

d) Subroutine POLY: We implement POLY using the
degree-3 polynomial of Figure 1. This polynomial was found
using Sollya and perfectly accurate evaluation of it would yield
an absolute error at most 2−89.218 for |y| < 2−19.999. We
evaluate it using the following scheme:

Q(y) ≈ 1 + y · q1 + y2h(q2 + yh · q3),

where q1 decomposes into q1h + q1ℓ as double-double. The
terms of order 2 and above are only computed in double-
precision. Using an FMA and an independent multiply, this is
particularly efficient.

Algorithm 11 POLY
Input: : y = yh + yℓ, |y|, |yh| < 2−19.999, |yℓ| < 2−71.63

Output: : t = th + tℓ approximating 2y

1: w ← ◦(y2h)
2: u← ◦(q3yh + q2)
3: v ← ◦(wu)
4: dh, dℓ ← DMUL(q1h, q1ℓ, yh, yℓ)
5: fh, fℓ ← FASTTWOSUM(1, v)
6: th, z ← FASTTWOSUM(fh, dh)
7: tℓ ← ◦(z + ◦(fℓ + dℓ))

Lemma 8: Let y = (yh, yℓ) be a double-double value such
that |y|, |yh| ≤ 2−19.999 and |yℓ| ≤ 2−71.63. Then POLY’s
result t is such that |th| < 1.01, |tℓ| < 2−50.948, and

|t− 2y| ≤ 2y · 2−89.0001.

Proof: Since |yh| < 2−19.999, we have |w| = ◦(y2h) <
2−39.997, and the rounding error on w is bounded by
ulp(2−39.997) = 2−92, and |w− y2| ≤ 2−92 +2|yhyℓ|+ y2ℓ ≤
2−90.157.

After u = ◦(q3yh + q2), since |q3| < 1 and |q2| < 0.2403,
we have |q3yh+q2| < 2−19.999+0.2403 < 0.241. Thus |u| <
0.242 and the rounding error on u is bounded by ulp(0.242) =
2−55. Since we neglected q3yℓ which is bounded in absolute
value by 2−71.63, we have |u−(q3y+q2)| < 2−55+2−71.63 <
2−54.999.

Now v = ◦(wu) approximates q2y
2 + q3y

3 with |wu| ≤
2−39.997 · 0.242, thus |v| < 2−42.043, and the rounding error

on v is bounded by ulp(2−42.043) = 2−95:

|v − (q2y
2 + q3y

3)|
≤ 2−95 + |wu− y2(q2 + q3y)|
≤ 2−95 + |w − y2|u+ y2|u− (q2 + q3y)|
< 2−95 + 2−90.157 · 0.242 + 2−39.998 · 2−54.999

< 2−91.838.

After dh, dℓ ← DMUL(q1h, q1ℓ, yh, yℓ), dh + dℓ approxi-
mates q1y. Knowing that |yh| < 2−19.999 and |yℓ| < 2−71.63,
Lemma 1 gives

T = RU(ulp(RU(q1h2
−19.999)) + q1ℓ2

−19.999) ≤ 2−72.72,

Dℓ = RU(T + q1h2
−71.63) ≤ 2−71.41,

Dh = RU(q1h2
−19.999) ≤ 2−20.52.

The total error of the DMUL call is therefore at most

|dh+dℓ−q1y| < 2−125+2−124+2−55.25 ·2−71.63 < 2−123.289.

After fh, fℓ ← FASTTWOSUM(1, v), fh + fℓ approximates
1 + q2y

2 + q3y
3. Since |v| < 2−42.043, the FastTwoSum

condition is fulfilled, and using Theorem 6 of [6] the rounding
error is bounded by 2−105 ufp(fh) ≤ 2−105. Also, since
|fh| < 2 it follows |fℓ| < ulp(1) = 2−52:

|fh + fℓ− (1+ q2y
2 + q3y

3)| < 2−105 +2−91.838 < 2−91.837.

After th, z ← FASTTWOSUM(fh, dh), th + z + fℓ + dℓ
approximates Q(y). Since |fh| ≥ ◦(1 − 2−42.043) ≥ 1/2
and |dh| < 2−20.5, the FastTwoSum condition is fulfilled.
Furthermore |fh+dh| < ◦(1+2−42.043)+2−20.5 < 1.01, and
by the same argument as above, the FastTwoSum rounding
error is bounded by 2−105 ufp(1.01) = 2−105, and |z| <
ulp(1.01) = 2−52:

|th + z + fℓ + dℓ −Q(y)|
< 2−105 + 2−91.837 + 2−123.289 < 2−91.836.

Finally after tℓ ← ◦(z + ◦(fℓ + dℓ)), th + tℓ approximates
Q(y). Let σ = ◦(fℓ + dℓ). Since |fℓ| < 2−52 and |dℓ| <
2−71.4, it follows |σ| < 2−51.9 and the rounding error on σ is
bounded by ulp(2−51.9) = 2−104. Since |z| < 2−52, we have
|z + σ| < 2−52 + 2−51.9 < 2−50.949, thus |tℓ| < 2−50.948 and
the rounding error on tℓ is bounded by ulp(2−50.948) = 2−103:

|tℓ − (z + fℓ + dℓ)| < 2−104 + 2−103 < 2−102.415.

Summarizing we get:

|th + tℓ −Q(y)| < 2−91.836 + 2−102.415 < 2−91.835.

Since Q(y) approximates 2y for |y| < 2−19.999 with absolute
error bounded by 2−89.218, and using 2y > 0.999999:

|th + tℓ − 2y| < 2−91.835 + 2−89.218 < 2−89.0001 · 2y.

We can now state the main theorem:
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Theorem 1: Given x ∈ F64, 2−64 ≤ |x| < 214, the integer
n and the double-double number s computed by Algorithm 7
satisfy:

ex = 2n · s · (1 + µ)

with |µ| < 2−87.193, 2−9.62·10−7

< sh < 2.03 and |sℓ| <
2−48.2.
Proof: From Lemma 5, the double-double number x′ = x′

h +
x′
ℓ computed by Algorithm 8 satisfies |x′

h| < 214.7, |x′
ℓ| <

2−37.141 and x′ = x/ log 2 + τ with |τ | < 2−88.951. Thus
Lemma 6 applies and (n, f, y) satisfy x′ = n+ f/220 + y+ ϵ
with 0 < f < 220, |y|, |yh| < 2−19.999, |yℓ| ≤ 2−71.63 and
|ϵ| < 2−87.922. It follows:

ex = 2n · 2f/2
20

· 2y · 2ϵ−τ .

Now from Lemma 7, the result z from subroutine LOOKUP
satisfies z = 2f/2

20

(1 + η) with |η| < 2−100.540, and by
Lemma 8, the double-double value t computed by subroutine
POLY satisfies t = 2y(1 + α) with |α| < 2−89.0001. thus

ex = 2n · z · t · 2ϵ−τ

(1 + η)(1 + α)
.

Using Lemma 1 on the DMUL(t, z) call using the postcondi-
tions of Lemma 7 and 8 and renaming A and B the quantities
from the lemma to avoid conflicts, we have{

A = RU(2.02 · 2−52 + 2 · 2−50.948) ≤ 2−49.3

B ≤ RU(A+ 1.01 · 2−49.271) ≤ 2−48.2,

so that the last DMUL’s error is bounded by 2−102 +2−101 +
2−50.948 · 2−49.271 < 2−99.313.

Since |z| ≥ 1 (by looking at the table values), and |t| ≥
2−2−19.999

(1− 2−89.0001) ≥ 2−9.6·10−7

we deduce the relative
error of DMUL is bounded by 2−99.313/2−9.6·10−7

< 2−99.312:

s = tz(1 + β) with |β| < 2−99.312.

Note that in this way, s ≥ 2−9.6·10−7

(1 − 2−99.312) ≥
2−9.61·10−7

The RECONSTRUCT procedure consists of a FASTTWOSUM
on the two components of s followed by Algorithms 5 and 6.
Lastly, the exponent n is added. We will call r0 the result of
this procedure before taking n into account, and r the return
value. Splitting s as sh, sℓ, the previous DMUL ensures that
|sℓ| ≤ 2−48.2. Since |sh| ≥ 2−9.61·10−7 − 2−48.2 ≥ 2−48.2,
the error of the FASTTWOSUM is at most 2−105 of the result.
Applying the error bound from Algorithm 5, we get that the
return value r0 follows

r0 = s(1 + γ) with |γ| < (1 + 2−105)(1 + 2−126)− 1.

We have |γ| ≤ 2−104.999.
Summarizing, we get:

ex = r · 2ϵ−τ

(1 + η)(1 + α)(1 + β)(1 + γ)
,

which implies ex = r · (1 + µ) with |µ| < 2−87.193.

Procedure RECONSTRUCT leverages Lemma 4 to determine
whether the result is correctly rounded. Having a from Algo-
rithm 6, if |a| > 241 then the distance from nearest rounding
boundary is at least a·2−64 ulp64(r0) ≥ 2−87r0 which ensures
r0 then r is correctly rounded. Otherwise, the fast path is
unconclusive.

B. Accurate path
The accurate path follows the same computation scheme as

the fast path, leveraging the extra software precision to attain
a relative error bound of 2−167.006.

To reduce total lookup table size we reuse the fast path’s
lookup tables using the ”accurate tables” trick from [7]. Let
1 ≤ k ≤ 4 and 0 ≤ t < 32. Assume the fast path’s lookup
tables approximated 2t/2

5k

as x. We then know that∣∣∣x− 2t/2
5k
∣∣∣ ≤ 2−107.

As a consequence, there must be some small s such that

x = 2s · 2t/2
5k

.

By storing a 62-bit approximation of s, we can make the
lookup phase output an approximation pair (s′, y) with y ≈
2f/2

20+s′ and s′ small. By adding s′ to the reduced value, this
allows us to get a lookup accuracy of 107 + 62 = 169 bits
using only 4 tables of 32 words of 64 bits, which fit in 1kB.

C. Computing hard-to-round cases with BaCSeL
We have computed hard-to-round inputs using BaCSeL.

BaCSeL [3] is a software tool to compute hard-to-round cases
of a mathematical function. BaCSeL takes as input an integer
m, and outputs all n-bit floating-point numbers x in [x0, x1)
such that:

|f(x)− ◦(f(x))| < 2−m ulp(f(x)),

where ◦(·) is any rounding mode. The complexity of the
underlying algorithm depends on several factors, but the larger
is m, the faster is the algorithm.

a) Normal output: Let x2 be the smallest long double
value such that expx > 216384 and x1 the largest such that
expx1 < 2−16382. Notice that for |x| < 2−65, expx rounds to
the same value as 1+x, thus we only have to search for hard-
to-round inputs in the ranges [x1,−2−65] and [2−65, x2). For
|x| large, the efficiency of the SLZ algorithm used by BaCSeL
decreases. For this reason, we further subdivided the search
into sub-ranges:

• for −24 < x ≤ −2−65 and 2−65 ≤ x < 0x1.484p+9,
we search worst cases with at least 54 identical bits after
the round bit. We found 158,662 such worst cases. The
largest number of identical bits after the rounding bit is
126 for x = 0x1.fffffffffffffffep-64. Apart
from such inputs very close to zero and with a special
form due to the Taylor expansion of exp, the largest
number of identical bits after the rounding bit is 75 for
x = -0x1.625ac7bfa54aba72p-14;

• for x1 ≤ x ≤ −24 and 0x1.484p+9 ≤ x < x2, we
search worst cases with at least 101 identical bits after
the round bit. We found no such worst case.
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b) Subnormal output: Let x0 be the smallest long double
such that expx0 ≥ 2−16445. For x0 ≤ x ≤ x1, expx lies in
the subnormal range [2−16445, 2−16382). For each exponent e,
−16444 ≤ e ≤ −16382, we compute the largest interval (ℓ, h)
such that 2e−1 ≤ exp(ℓ) ≤ exp(h) < 2e, and search with
BaCSeL inputs in this interval with at least 101 identical bits
after the round bit (which has weight 2−16446 for all intervals).
We found no such input.

c) Correctness of the accurate path:
Lemma 9: Assume a floating-point format with a precision

of p bits, and an accurate path with relative error less than 2k.
Then if x is such that f(x) is at distance at least 2−m ulp
from a rounding boundary, then rounding the approximation
y of the accurate path delivers the correct rounding of f(x)
as long as:

m ≤ −k − p− 1 + log2(1− 2k). (1)

Moreover this remains true in the subnormal range.
Proof: Let x as in the statement of the lemma, and z a (p+1)-
bit floating-point number. We then have:

|f(x)− z| ≥ 2−m ulpp(z) > 2−m−p|z|.

The approximation y of f(x) computed by the accurate path
satisfies |f(x)−y| < ε with ε = 2k|y|. Assume the confidence
interval [y − ε, y + ε] crosses a rounding boundary z. Then:

|z − y| ≤ 2k|y|, |f(x)− y| < 2k|y|, |f(x)− z| > 2−m−p|z|.

By the triangular inequality, it follows 2k+1|y| > 2−m−p|z| ≥
2−m−p(1 − 2k)|y|. This contradicts the hypothesis on m,
thus the confidence interval [y − ε, y + ε] cannot contain
any rounding boundary, which proves that any number in this
interval rounds to the same value. Therefore rounding y yields
the correct rounding of f(x).

In the subnormal range, the output “local” precision p′

satisfies p′ ≤ p: if Eq. (1) holds for p, it also holds for p′.

In the expl case, the relative error of the accurate path is
less than 2k with k = −167.006, we have p = 64, thus from
Lemma 9 we find that m ≤ 102 suffices. This corresponds
to -m 102 in BaCSeL syntax, which means searching all
inputs such that | expx − z| < 2−102 ulp64(z), where z
is a 65-bit floating-point number (exact double extended or
midpoint). The correctness of the accurate path follows from
the following remarks:

• if f(x) has at least 101 identical bits after the round bit, x
will be found by our search with BaCSel. It thus suffices
to check that f(x) is correctly rounded by the accurate
path, and otherwise treat x as exceptional case;

• otherwise, f(x) has less than 101 identical bits after the
round bit, and by Lemma 9 it is correctly rounded.

V. RESULTS AND CONCLUSION

Using the previously-described methods, we implemented
correctly-rounded versions of expl, powl and log2l in
CORE-MATH [10]. We expect our methods to be applicable
to a wide array of standard functions.

expl powl log2l

CORE-MATH 47.5 165.7 44.9
Intel Math Library (2025.0.0) 64.2 288.4 83.1
GNU Libc 2.40 127.1 761.6 65.0
Openlibm 0.8.5 151.5 640.1 151.1
Musl 1.2.5 115.0 546.5 47.3

Fig. 2. Reciprocal throughput (in cycles) of some double extended precision
functions on a Intel Xeon Silver 4214 with GCC 14.2.0.

We certified the correctness of our implementations using
BaCSeL, and tested their performance with the CORE-MATH
benchmark suite. We consistently obtained better performance
than the other mathematical librairies with double extended
support (see Figure 2). We attribute this to our use of double-
double arithmetic in the fast path, which has a very high
success rate (on 108 random inputs in [−10, 10], we get 19
failures of the rounding test, thus a probability of about 2−22).
Other implementations extensively use x87 features, which in
modern processors are badly pipelined and slow.

The GNU Libc and the Intel Math Library use complex x87
features such as FSQRT which are not completely specified.
Our code only uses FMA operations, which are completely
specified. Because the correctness of our algorithms is based
on the double precision FMA, we expect them to be portable
across architectures, operating systems and processor manu-
facturers.
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