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Abstract—Large-scale numerical computations make increas-
ing use of low-precision (LP) floating point formats and mixed
precision arithmetic, which can be enhanced by the technique of
stochastic rounding (SR), that is, rounding an intermediate high-
precision value up or down randomly as a function of the value’s
distance to the two rounding candidates. Stochastic rounding
requires, in addition to the high-precision input value, a source
of random bits. As the provision of high-quality random bits is
an additional computational cost, it is of interest to require as
few bits as possible while maintaining the desirable properties
of SR in a given computation, or computational domain. This
paper examines a number of possible implementations of few-
bit stochastic rounding (FBSR), and shows how several natural
implementations can introduce sometimes significant bias into the
rounding process, which are not present in the case of infinite-
bit, infinite-precision examinations of these implementations. The
paper explores the impact of these biases in machine learning
examples, and hence opens another class of configuration param-
eters of which practitioners should be aware when developing or
adopting low-precision floating point.

I. INTRODUCTION

Large-scale numerical computations make increasing use of
low-precision (LP) floating point formats, both for storage
and computation. As compared to 32 and 64 bit formats,
narrow storage formats (16, 8, and even fewer bits per el-
ement) allow larger arrays to be stored in high-bandwidth
memory, close to accelerated arithmetic units; and allow more
elements to be transported per second across communications
links, whether within or between compute nodes. Narrow-
format arithmetic can be implemented more efficiently, both in
hardware and software, increasing the speed of computation.
Of course, narrow formats imply decreased accuracy, requiring
computations to be re-engineered in order to compensate. In
areas such as machine learning, the training of large models
has demonstrated that this re-engineering can yield significant
improvement in the scale and speed at which a computational
goal can be accomplished, while yielding models of equivalent
or greater accuracy at reduced cost. In some instances, the
low-precision models are superior in the sense that they can
be deployed on lower-power devices after training.

This re-engineering, however, can prove difficult or impos-
sible at lower format widths. There is, after all, a considerable
loss of precision and dynamic range in LP formats, giving
rise to the following challenges: careful dynamic range man-
agement, judicious deployment of mixed low and standard
precision, a re-exploration of “hyper-parameter” settings (such
as step sizes, number of iterations, etc). These challenges can

be mitigated by the use of stochastic rounding (SR), as has
been shown in many application domains [1]–[5].

The focus of this paper is on implementations of SR which
use small numbers of random bits, which we call few-bit
stochastic rounding (FBSR). In particular, we consider the
case where the number of random bits used is smaller than
the difference in precision between the values to be rounded
and the target precision. We illustrate (see Figure 1) that
natural implementations may have sometimes significant bi-
ases, confounding any experimental investigations into FBSR.
Mitigations for these biases are presented, and empirical
results are presented to argue for the effectiveness of these
mitigations, and hence for the utility of FBSR.

A. Related work

Croci et al. [6] provide an excellent survey of the theory
and applications of SR in a variety of fields including ma-
chine learning and quantum computing. In almost all current
implementations, whether hardware or software, the number
of random bits used equals the number of trailing significand
bits, so are not in the few-bit regime described in this paper.
For future implementations, however, it is expected that our
findings will be useful in making design decisions.

This paper’s primary contribution is a description of, and
remediation of, the bias that some implementations of FBSR
may introduce. This bias has been analysed theoretically in
recent work by El Arar et al. [7], [8], but no mitigation is
proposed. The current paper proposes two alternative miti-
gations, and provides a more application-focused derivation
of the bias computation which may prove useful to some
readers. Xia et al. [9] also consider bias in SR, but with
the goal of introducing bias in order to reduce variance.
Given current usage of SR in large-scale machine learning
applications where millions or billions of roundings occur in
one training iteration, it is suggested that bias is of greater
concern than variance in current applications.

The paper does not discuss the quality of the supplied
bits, merely their quantity. Some recent work [10] suggests
that lower quality sources (e.g. nearby truncations) may serve
effectively in practice. It is thus conceivable that more bits
from a lower-quality source might allow a more efficient
implementation than a bias-free implementation with fewer
high-quality bits, although the extent of the bias is such that
this appears unlikely, and the conflations involved in using
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Fig. 1. Bias in stochastic rounding with finite randomness. For each X value, 5000 samples are rounded with 2 bits of randomness, and the mean of the
rounded values is plotted. (Left, SRFF): Mean rounded values are below the line Y = X , indicating bias. The computed bias of −0.124 ≈ −2−3, as
predicted by the calculation of §III-C. (Right, SRF): Mean rounded values are symmetric around Y = X , with bias ≈ 0, following §III-D.

lower-quality sources might render theoretical analysis difficult
or impossible.

As noted by several authors [1], [2], low-precision formats
generally make use of a scaled tensor implementation, where
blocks of low-precision values are accompanied by a scale
factor, which may be a power of two (i.e. a pure-exponent
format, or another floating point format). This somewhat
expands the applicability of the approach described in this
paper, as even if intermediate values are computed in mid-
precision formats such as BFloat16, the scaled values may
have larger effective precision, making the corrections in this
paper more important.

B. Contributions and limitations

For the reader’s convenience, the contributions and limitations
of this work are outlined:

• A simple but general mathematical framework for the
description and analysis of FBSR, with a particular focus
on practical implementation;

• A definition of several FBSR methods within this frame-
work;

• Analysis of the bias properties of these methods, reveal-
ing biases that are not, to our knowledge, described in
the existing literature;

• Experimental investigations of the practical impact of the
discovered biases on representative computations from
machine learning.

Primary limitations are:
• The experimental investigations are at a scale which is

sufficient to confirm that the biases can have an effect
on real-world use cases, but these conclusions may not
extend to larger-scale deployments.

• The costs, in terms of area and power, of any hardware
implementation are not discussed. This is at least in part
because so many area/power decision tradeoffs exist even

when the parameters are fixed. It is hoped that the paper’s
investigations are of utility in making such tradeoffs in
any future hardware designs.

II. BACKGROUND AND NOTATION

We consider binary floating point numbers represented by
the triple (s, e, t) ∈ N3, representing sign, (biased) exponent
and the fractional part (trailing bits) of the significand. A
floating point format is parameterized by width in bits K,
precision in bits P , and exponent bias B. We shall also make
use of M , the largest finite value in the format’s value set
(from which it assumed symmetrically that −M is the smallest
finite value). The real value encoded by (s, e, t) in format
(K,P,B;M) is given by the function

F (s, e, t;P,B)

defined as

(−1)s ×

{
(0 + t× 21−P )× 21−B if e = 0

(1 + t× 21−P )× 2e−B if e > 0
(1)

where the e = 0 case encodes subnormal numbers. In this
definition, the precision P is one more than the number of
mantissa bits that need to be encoded in a packed binary
representation of the number. Formats may additionally en-
code infinities, negative zero, and not-a-number (NaN) values,
which shall largely not feature in the discussions of this paper
(in implementations, it is assumed that values outside the
representable finite float range are rounded deterministically
as in IEEE-754 round to nearest).

A. Rounding

A strictly positive real value x̃ > 0 is rounded as follows.
We first compute the real-valued significand σ̃ ∈ [2P−1, 2P ),
which is then rounded to integer σ ∈ {2P−1, ..., 2P }, of which
the trailing bits are encoded (incrementing the exponent if σ =
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SRFast vs SR, input precision 8, target precision 3, D=5, nbits 3, P+srnumbits=6 =?= 8

Fig. 2. Bias in stochastic rounding with finite randomness, finite-precision inputs. For each X value in BFloat16, 100,000 samples are rounded with 2 bits
of randomness, and the mean of the rounded values is plotted. (Left, SRFF): Mean rounded values are below the line Y = X , indicating bias. The computed
bias is ≈ -0.046875, as predicted by the calculation of §III-E and §A-C. (Middle, SRF): Mean rounded values are not symmetric around Y = X , with bias
≈ 0.015625, following §A-D. (Right, SRC): Mean rounded values are symmetric around Y = X , with empirical bias ≈ 0.000, following the correction of
§III-E.

2P ). The initial exponent is computed as follows, allowing for
subnormals:

ẽ = max(⌊log2(x̃)⌋, 1−B) (2)

from which the (scaled) significand is

σ̃ = x̃× 2−e × 2P−1 (3)

Then, rounding to integer with ties away from zero is repre-
sented by

δ̃ = σ̃ − ⌊σ̃⌋

σ =

{
⌊σ̃⌋ if δ̃ < 0.5

⌊σ̃⌋+ 1 if δ̃ ≥ 0.5

which may be written compactly in terms of a predicate

RTA(δ̃) = δ̃ ≥ 0.5 (4)

whence we can replace the above with

σ = ⌊σ̃⌋+ 1[RRoundMode(σ̃ − ⌊σ̃⌋)] (5)

For ties to nearest even or odd (TNE, TNO), we may define
an alternative RRoundMode, which has access to σ̃ in order to
determine the direction in which to resolve ties. For example,

RTNE(σ̃, δ̃) = δ̃ > 0.5 or
(
δ̃ = 0.5 and IsEven(⌊σ̃⌋+ 1)

)
where IsEven(i) is true iff integer i is even. In practice,
implementations may use comparison as indicated above, or
an alternative implementation using addition, analogous to
δ̃ + 0.5 ≥ 1.0. The conclusions of this paper apply to both
implementations, with possible inversion of the direction of
any bias.

B. Stochastic Rounding

With the above notation, stochastic rounding is readily
defined

RSR(δ̃) = δ̃ + ñ ≥ 1

where the “noise” ñ is a random variable drawn from a
uniform distribution between 0 and 1. As mentioned in the
introduction, the quality of the random number generator is
orthogonal to the concerns of this paper. In practical imple-
mentations of SR, the random numbers will be supplied as a
finite sequence of random bits, denoted by an integer n such
that

0 ≤ n < 2N ,

where N is the number of bits in n. Random bits are passed
to the R function, so that a natural analogue of the infinite
precision definition is given by

RSRFF(δ̃, n) = δ̃ + n× 2−N ≥ 1

As will be explored in the following, this definition proves
to be biased, and variations which mitigate this bias shall be
defined. One which is of common practical utility is the form
we shall name “SRF”1:

RSRF(δ̃, n) = δ̃ +

(
n+

1

2

)
× 2−N ≥ 1

III. BIAS

A property that one might require of any rounding scheme
is that it is unbiased, or that the expected difference between
inputs and outputs is zero. Written loosely, this might be

E[x− round(x)] = 0.

As written, this definition is somewhat vacuous: the expec-
tation can only be over values of x, and hence depends on

1The naming scheme encodes speed (and concomitant reduced accuracy):
corrected (SRC), fast (SERF), faster (SRFF).
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a choice of prior probability distribution p(x). Writing more
explicitly, the requirement is

Ex∼p(x)[x− round(x)] = 0.

This prior should not, for example, simply be the set of
real values which map to the format’s finite range, e.g. p(x)
being the uniform distribution on [−M,M ]. Under such a
distribution, always rounding toward zero is unbiased, as the
negative values will cancel the positives.

More meaningfully, the expectation may be over a family
of test distributions P , and we require unbiased rounding for
all members of the family:

∀p ∈ P : Ex∼p(x)[x− round(x)] = 0.

In this paper, we choose to require that values between each
pair of floats are unbiased on average, i.e., if U(l, h) is the
uniform distribution between l and h, and F is the set of
finite floats in a format, then a family of test distributions is

P =
{
U(f, succ(f)), f ∈ F − {M}

}
(6)

hence we require that

∀f ∈ F , f < M :

∫ succ(f)

f

(x− round(x))dx = 0

In terms of a rounding predicate R, as in (5), unbiased
rounding then means∫ 1

0

1

[
R(δ̃)

]
− δ̃dδ̃ = 0

or, equivalently ∫ 1

0

1

[
R(δ̃)

]
dδ̃ − 1

2
= 0

A. Stochastic rounding
For SR, we must additionally compute the expectation over

the random variable ñ:

∀p ∈ P : Eñ

[
Ex∼p(x)[x− round(x)]

]
= 0.

In the infinite-precision case, the family P can be delta
functions at all x ∈ [−M,M ], with zero bias at all points

∀x ∈ [−M,M ] :

∫ 1

0

[x− round(x, ñ)]dñ = 0

Equivalently, this is the requirement that

∀δ̃ ∈ [0, 1] :

∫ 1

0

1

[
δ̃ + ñ ≥ 1

]
dñ = δ̃

which is straightforwardly true as for all δ̃ ∈ [0, 1] we have∫ 1

0

1

[
δ̃ + ñ ≥ 1

]
dñ =∫ 1

0

1

[
ñ ≥ 1− δ̃

]
dñ =∫ 1

1−δ̃

1dñ =

1− (1− δ̃) = δ̃

B. Stochastic rounding, finite randomness

In the finite-randomness case, the test distributions must
revert to the family of (6), i.e. uniform between each pair of
floats, so the unbiasedness condition is

En

[∫ 1

0

1[R(x, n)] dx

]
− 1

2
= 0

which is the discrete sum

2−N
2N−1∑
n=0

∫ 1

0

1[R(x, n)] dx− 1

2
= 0

C. Bias of SRFF

Let us now compute the bias of the SRFF mode, for a
given number of bits N . Appendix A-A contains the complete
calculation, key steps of which are as follows:

2−N
2N−1∑
n=0

(∫ 1

0

1[RSRFF(x, n)] dx−
1

2

)
=

2−N
2N−1∑
n=0

∫ 1

0

1
[
x+ n× 2−N ≥ 1

]
dx− 1

2
=

2−N
2N−1∑
n=0

∫ 1

1−n×2−N

dx− 1

2
=

−2−(N+1) ̸= 0

Hence SRFF is biased, with bias decreasing with increased
number of random bits. As shown later in experiments, even
with 4 bits of randomness, the bias can significantly affect
deep learning training.

D. Unbiasedness of SRF

A similar calculation for SRF mode becomes (again see
appendix for detail)

2−N
2N−1∑
n=0

∫ 1

0

1[RSRF(x, n)] dx−
1

2
=

2−N
2N−1∑
n=0

∫ 1

0

1

[
x >

(
n+

1

2

)
× 2−N

]
dx− 1

2
= 0

showing that SRF is unbiased, in that the expectation com-
puted over all real values between two floats is zero.

E. Bias, finite precision inputs

The above calculations assume that all real numbers are
equally likely inputs to rounding. In real-world systems, the
inputs will be available at some precision Q > P , which
we shall write in terms of the number of excess bits D,
i.e. Q = P + D. When D is large, for example, when
converting from 32-bit or higher formats, we might expect
the calculations above for infinite-precision inputs to pertain.
However it is not unusual for the source format to be relatively
close in precision to the target. For example, BFloat16 has a
precision of 8 and might be rounded to an E5M2 format with
a precision of 3, in which case D = 5.
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Algorithm 1 Quantization-aware training of an 8-bit (F8)
model using high-precision (F16) gradients.
w8 : F8← initializers
while not done do

w16 : F16← w8

g16 : F16← ∇loss(w16)
u16 : F16← AdamW update in F16
w8 ← RoundTo8(w16 + u16) ▷ SR applied here

end while

In such cases, the integral also becomes a discrete sum
over the incoming values between 0 and 1. For simplicity,
we consider initially only the case where the incoming range
does not wrap binades in our target interval. Hence there are
2D values (excluding 1). Then the bias of SRFF becomes

biasSRFF,D =

2−D
2D−1∑
i=0

2−N
2N−1∑
n=0

1
[
RSRFF(2

−Di, n)
]
− 2−Di

 (7)

As derived (with more verbose annotations) in the appendix,
this calculation yields the bound (tight for N ≤ D)

biasSRFF,D ≤
2−D − 2−N

2

from which it is clear that the bias is zero for N = D.
We note that N = D is the case commonly implemented in

today’s hardware, however, as noted in the introduction, the
research literature is increasingly exploring N < D, in which
case correction of the bias will be required.

It is not sufficient to use SRF, which also has a bias, as
shown in §A-D bounded by (and again, with the bound being
tight for N <= D)

biasSRF,D ≤ 2−(D+1)

F. Bias-corrected few-bit SR (SRC)

There is, however, a simple correction: first deterministically
round the incoming precision-Q values to precision Q′ = P +
N then apply SRFF. This reduces the problem to the N = D′

case, which is unbiased for SRFF as described above. More
formally:

RSRC(δ̃, n) = RSRFF(Round(δ̃ × 2N )× 2−N , n) (8)

where Round is any unbiased rounding scheme, e.g. round to
nearest, with ties to even or odd. Despite its simplicity, we
are not aware of this correction having been described in any
existing discussion of FBSR. As shall be shown in the sequel,
empirical results support the theoretical calculations above.

IV. EXPERIMENTS

A current interest in the field of generative language mod-
elling is in the training of models with low-precision weights,
such that inference can be performed on low-power devices.
While low-precision weights can be obtained by post-training

Fig. 3. Experiments on language model training (nanoGPT, small model).
Binary16 baseline: achieves minimum validation loss at about 1900 iterations,
after which training loss (not shown) reduces, but validation loss increases.
Binary8P4 RTNE: initial loss reduction followed by “stagnation”; SRFF:
initial loss reduction followed by “divergence”; SRF, SRC: convergence to
stable values. Although SRF and SRC converge to better validation errors
than Binary16, this regularization behaviour is expected to apply only to such
small-scale experiments, and should not be taken as an indication of any
superiority of Binary8+SR over Binary16.

quantization (PTQ), that is, simply casting learned weights
to the low-precision format, it is increasingly understood that
performing quantization-aware training (QAT) can yield more
accurate models [11]. To this end, we have performed a
simple simulation of QAT whereby weights are rounded to
the target precision at initialization and after every gradient
update (or equivalently, before every gradient calculation). A
more precise definition in pseudocode is given at Algorithm 1.

Algorithms were implemented on the nanoGPT code-
base [12], with stochastic rounding implemented via the
gfloat library [13]. The implementation did not make use
of SR implemented in hardware, in order to be able to freely
vary the SR implementation.

The default model was trained on the Shakespeare dataset.
At this small scale, the model is known to overfit training
data, and hence validation loss is the figure of merit followed.
Training baselines were run with gradient updates computed
in BFloat16, and Binary16, yielding essentially identical vali-
dation curves. The target format was set to IEEE WG P3109
Binary8P4 [14] format whose precision corresponds to that
of OCP E4M3 format. For these experiments, the number of
SR bits used was 3. In principle, as gradient updates are in
BFloat16, with a precision of 8, and the target has a precision
of 4, the ideal number of SR bits to use is 4.

As illustrated in Figure 3, rounding to nearest with ties to
even (RTNE) succeeds in initially reducing the validation loss,
but then “stagnates”, where further gradient updates make no
change to the weights and hence to the loss. Rounding to
Binary8P4 under the (biased) SRFF implementation initially
decreases the loss, but soon “diverges”, with the loss rapidly
increasing. Both bias-corrected implementations (SRF, SRC)
decrease the loss, initially to the minimum value achieved
by the Binary16 baseline, and then continue to slightly
reduce loss. However, as mentioned in the figure caption,
this regularization behaviour is expected to apply only to
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Fig. 4. Experiments on language model training (nanoGPT, GPT-2 (350M params)). Binary16 baseline: validation loss follows training loss (not shown) very
closely. Binary8P4 SRFF: initial loss reduction followed by “divergence”; SRF, SRC: convergence to stable values. In this case SRF and SRC converge to
better validation errors than SRFF, but not to the same loss as Binary16.

such small-scale experiments, and should not be taken as an
indication of any superiority of Binary8+SR over Binary16.
The model was then configured to GPT-2 settings (26 layers,
16 heads, embedding dimension 1024), amounting to 354
million parameters. In these experiments, training was stopped
at 30,000 iterations, meaning that we expect under-training, so
validation loss follows training loss (this was observed). The
model was trained in Binary8P4 as above, under SRFF, SRF,
SRC modes. In this instance, SRFF attained a final loss value
of 4.06, compared to 3.14 for each of SRC, SRF, and 2.74
for Binary16. It should be noted that the training dynamics
(and hence the optimal hyperparameter settings) of this simple
QAT method are almost certainly quite different from the
Binary16 defaults, so it is not necessarily expected that the
loss achieved by SR will match Binary16. The key outcome of
this experiment is the indication that the correction of SRFF’s
bias can avoid divergence. Divergence was not as dramatic
as for the smaller model, but was nevertheless significant,
suggesting that alternatives to SRFF may be of value in future
implementations.

V. CONCLUSION

This paper has illustrated the potential for systematic bias in
some plausible implementations of few-bit stochastic round-
ing. The mitigations of these biases are also presented, with
different cost/accuracy tradeoffs. Some experimental evidence
is provided to suggest that these biases may prove significant
in practice, and that further exploration into the costs of
hardware or software implementations may be of value. Source

code implementing all experiments, and including symbolic
algebra derivations of the various computations, will be made
available.

APPENDIX A
BIAS COMPUTATIONS

This section records a detailed derivation of the bias com-
putations in §III.

A. Bias of SRFF, infinite-precision inputs

The calculation of §III-C is expanded here:

2−N
2N−1∑
n=0

∫ 1

0

1[RSRFF(x, n)] dx−
1

2

= 2−N
2N−1∑
n=0

∫ 1

0

1
[
x+ n× 2−N ≥ 1

]
dx− 1

2

= 2−N
2N−1∑
n=0

∫ 1

1−n×2−N

dx− 1

2

= 2−N
2N−1∑
n=0

n× 2−N − 1

2

= 2−2N
2N−1∑
n=0

n− 1

2

= 2−2N (2N − 1)(2N )

2
− 1

2
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= 2−2N 22N − 2N

2
− 1

2

=
1− 2−N

2
− 1

2

= −2−N

2
= −2−(N+1) ̸= 0

B. Bias of SRF, infinite-precision inputs

The calculation in §III-D is expanded as follows:

biasSRF = I − 1

2

where

I = 2−N
2N−1∑
n=0

∫ 1

0

1[RSRF(x, n)] dx

= 2−N
2N−1∑
n=0

∫ 1

0

1

[
x+

(
n+

1

2

)
× 2−N ≥ 1

]
dx

= 2−N
2N−1∑
n=0

∫ 1

1−(n+ 1
2 )×2−N

dx

= 2−N
2N−1∑
n=0

((
n+

1

2

)
× 2−N

)
so

biasSRF = 2−N
2N−1∑
n=0

(
n× 2−N +

1

2
× 2−N

)
− 1

2

= biasSRFF + 2−N
2N−1∑
n=0

(
1

2
× 2−N

)
= −2−(N+1) + 2−(N+1) = 0

C. Bias of SRFF, finite-precision inputs

The bias at a single x value is

biasSRFF (x)

= 2−N
2N−1∑
n=0

1[RSRFF(x, n)]− x

= 2−N
2N−1∑
n=0

1
[
x+ 2−Nn ≥ 1

]
− x

and its expectation over the 2D input values is

biasSRFF,D

= 2−D
2D−1∑
i=0

biasSRFF (x := 2−Di)

= 2−D
2D−1∑
i=0

2−N
2N−1∑
n=0

1
[
2−Di+ 2−Nn ≥ 1

]
− 2−Di


= 2−D

2D−1∑
i=0

2−N
2N−1∑
n=0

1
[
2−Di+ 2−Nn ≥ 1

]
− 2−Di



=

2−D
2D−1∑
i=0

2−N
2N−1∑
n=0

1
[
2−Di+ 2−Nn ≥ 1

]
− 2−D

2D−1∑
i=0

2−Di

=

2−N
2N−1∑
n=0

2−D
2D−1∑
i=0

1
[
i ≥ 2D − 2D−Nn

]
− 1− 2−D

2

=

2−N
2N−1∑
n=0

2−D
2D−1∑

i=⌈2D−2D−Nn⌉

1

− 1− 2−D

2

=
2−N

2N−1∑
n=0

2−D

(
(2D − 1)−

⌈
2D − 2D−Nn

⌉
+ 1

)
− 1− 2−D

2

= 2−N
2N−1∑
n=0

2−D
⌊
2D−Nn

⌋
− 1− 2−D

2

If N ≤ D then 2D−N is an integer so the floor operation is a
no-op. If D < N then 2D−N is a reciprocal power of two so
the argument will be integral for some values of n. We may
obtain a bound using ⌊x⌋ ≤ x, which will be tight for N ≤ D.

biasSRFF,D = 2−N
2N−1∑
n=0

2−D
⌊
2D−Nn

⌋
− 1− 2−D

2

≤ 2−N
2N−1∑
n=0

2−Nn− 1− 2−D

2

=
1− 2−N

2
− 1− 2−D

2
= −2−(N+1) + 2−(D+1)

=
2−D − 2−N

2
D. Bias of SRF, finite-precision inputs

The bias at a single x value is

biasSRF,D(x) = 2−N
2N−1∑
n=0

1[RSRF(x, n)]− x

= 2−N
2N−1∑
n=0

1

[
x+

(
n+

1

2

)
× 2−N ≥ 1

]
− x

and its expectation over the 2D input values is

2−D
2D−1∑
i=0

biasSRFF,D(x := 2−Di)

= 2−D
2D−1∑
i=0

2−N
2N−1∑
n=0

1

[
2−Di+

(
n+

1

2

)
× 2−N ≥ 1

]
− 2−Di


= 2−D

2D−1∑
i=0

2−N
2N−1∑
n=0

1

[
2−Di+

(
n+

1

2

)
× 2−N ≥ 1

]
− 2−Di
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=

2−D
2D−1∑
i=0

2−N
2N−1∑
n=0

1

[
2−Di+

(
n+

1

2

)
× 2−N ≥ 1

]
− 2−D

2D−1∑
i=0

2−Di

=

2−N
2N−1∑
n=0

2−D
2D−1∑
i=0

1

[
i ≥ 2D −

(
n+

1

2

)
× 2D−N

]
−

1− 2−D

2

=

2−N
2N−1∑
n=0

2−D
2D−1∑

i=⌈2D−(n+ 1
2 )×2D−N⌉

1

−
1− 2−D

2

=
2−N

2N−1∑
n=0

2−D

(
(2D − 1)−

⌈
2D −

(
n+

1

2

)
× 2D−N

⌉
+ 1

)

−
1− 2−D

2

= 2−N
2N−1∑
n=0

2−D

⌊(
n+

1

2

)
× 2D−N

⌋
−

1− 2−D

2

= 2−N
2N−1∑
n=0

2−D

⌊
n× 2D−N +

1

2
× 2D−N

⌋
−

1− 2−D

2

= 2−N
2N−1∑
n=0

2−D
⌊
n× 2D−N + 2D−N−1

⌋
−

1− 2−D

2

As before, the floor operation is a complication. If D > N
then 2D−Nn and 2D−N−1 are integers, so the bound using
⌊x⌋ ≤ x will be tight for N < D.

Hence biasSRF,D =

2−N
2N−1∑
n=0

2−D
⌊
n× 2D−N + 2D−N−1

⌋
− 1− 2−D

2

≤ 2−N
2N−1∑
n=0

(
n× 2−N + 2−N−1

)
− 1− 2−D

2

= 2−2N
2N−1∑
n=0

n+ 2−N−1 − 1− 2−D

2

= 2−2N (2N − 1)2N

2
+ 2−N−1 − 1− 2−D

2

=
1− 2−N

2
+ 2−N−1 − 1− 2−D

2
= −2−(N+1) + 2−N−1 + 2−(D+1)

= 2−(D+1)

so the bias depends on D but is independent of N (noting that
N ≤ D is required for the computation to be exact.)
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