
Robust, End-to-end Correctness Proofs of Industrial
Divide and Square Root RTL Designs

Sol Swords
Previous Institution: Intel Corporation

Current Institution: Arm, Inc.
https://orcid.org/0000-0002-5958-9580

sol.swords@arm.com

Cuong Chau
Intel Corporation

Vietnam
cuong.chau@intel.com

Abstract—Hardware implementations of divide and square
root operations are difficult and high-value targets for formal
verification. We describe an approach using the ACL2 theo-
rem prover that has resulted in robust, end-to-end correctness
proofs for highly optimized industrial implementations of such
operations. Using this approach, we developed initial proofs for
divide and square root operations in less than three person-
months each. We subsequently proved the correctness of all
operations on a floating point divide/square root design and
an integer divider implementing up to 128-by-64-bit divides,
both highly optimized industrial implementations. These proofs
run in minutes per operation and have been straightforward
to maintain against design changes. This methodology allows
lemmas to be proved about portions of the hardware model,
and these lemmas seamlessly composed to complete a top-level
proof that the whole operation runs correctly. This decomposition
allows fully automatic proof methods to be applied to the portions
of the hardware model that capacity allows, and the composition
of these portions is amenable to rewriting and other traditional
interactive theorem proving methods.

Index Terms—decomposition proof methodology, theorem
proving, automated reasoning, equivalence checking, divide and
square root verification, hardware verification

I. INTRODUCTION

Formal verification of complex datapath operations in mod-
ern hardware designs, such as division and square root, is still
not amenable to fully automatic methods. Lack of support for
ad-hoc proof methods in automatic tools prevents them from
scaling to complex operations. In order to verify several divide
and square root operations on a highly optimized industrial
register-transfer level (RTL) design, we have developed a
methodology based on the ACL2/SVTV hardware verification
framework [1], a set of open-source libraries built on the
ACL2 theorem prover. This methodology allows seamless
composition of proofs about separate parts of the hardware
operation, which may be done independently with different
automated tools and subsequently composed into an ACL2
theorem stating the correctness of the full operation. We have
used this methodology to verify several integer divide and
floating-point (FP) divide and square root operations on state-
of-the-art, highly optimized, high-radix designs at Intel. The
operations verified include up to 128-by-64-bit integer divide
and single-instruction/multiple-data (SIMD) IEEE-compliant
single and double-precision floating point operations. These

proofs run in minutes per operation, easily allowing for
nightly regression testing and offering no impediment to the
debugging loop with designers. The initial development of
the proofs for the first version of single-precision divide and
square root operations took less than a quarter each for a
single expert user. Proofs for subsequent operations and proof
modifications due to major design changes both requiring
much less development time—up to 4 weeks including design
bug fix iterations. All such proofs produce a final theorem
stating that when the given operation runs on our formal model
of the RTL design, it produces outputs equal to those produced
by our ACL2 specification function for the operation. To
our knowledge, these are the most comprehensive correctness
proofs of divide/square root implementations that have been
done within a single formal framework.

Key to our methodology is the ability to reason about iso-
lated portions of the hardware model’s behavior. For example,
in an iterative division algorithm we might express the next
partial quotient Qi+1 and remainder Ri+1 in terms of the
current partial quotient Qi and remainder Ri, separately from
how Qi and Ri are computed from primary inputs. We need
to do this in a manner that truly isolates the target logic. In
this example, we do not want the automated proof tools used
in this proof to consider the fanin cones for Qi and Ri—they
should be treated as primary inputs instead. We accomplish
this by overriding these signals at the appropriate time steps,
setting these signal values to free variables disconnected from
the respective fanin cones. The ACL2/SVTV framework offers
an automated and verified method of using theorems about
circuits with overrides to prove analogous theorems without
overrides. Multiple such override-free theorems can then be
seamlessly composed together, resulting in a top-level theorem
pertaining to an override-free run of the design.

The decomposition facility and the integration of all parts
of the proof in ACL2 allows a choice of automated tools to
be applied to each part of the problem. For most portions of
the design, we use the bit-blasting rewriter FGL [2], [3] to
reduce conjectures to Boolean formulas that are then proved
with an external SAT solver or with combinational equivalence
checking methods. For multipliers, adder trees, and similar
arithmetic blocks, we use VeSCMul [4]–[6], a proof engine
that transforms such arithmetic functions into a normal form

149

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00031

in terms of sum/carry functions. Both VeSCMul and FGL are
verified clause processors [7]—reasoning engines defined and
proved correct in ACL2 that are then allowed to be used in
ACL2 proofs.

A particular aid to our floating-point square root verification
effort is a tool for finding and proving lower and upper bounds
for arithmetic terms [8], [9]. It is not always straightforward
to determine and prove bound invariants in iterative approx-
imation algorithms, especially when implemented in highly
optimized industrial designs. As demonstrated in our square
root verification, we instead used our bound-finding tool to
establish pragmatic bounds that were sufficient for proving
the convergence of the square root algorithm. We successfully
applied this tool to find and verify bounds for the partial root
and remainder in each iteration in our proofs.

We compare our framework to other related work in
Section II. Section III describes our hardware verification
environment and the steps to build a formal hardware model.
Section IV goes through an example proof to show how our
decomposition methodology works. Section V describes the
series of steps in proving the correctness of a divide/square
root hardware operation. Finally, Section VI discusses the
results achieved by this methodology.

II. RELATED WORK

The present work is based on an evolution of the datap-
ath verification framework developed at Centaur Technology,
Inc. [2], [10], [11], eventually encompassing the VL Sys-
temVerilog toolsuite, the GL and FGL bit-blasting engines,
and the SVEX hardware modeling framework. Rager et al.
applied a previous version of that framework to their formal
verification of divide and square root implemented in the
SPARC microprocessor [12]. Decomposition supported by that
framework was done with equivalence checking techniques
that are less scalable and reliable than our method: the override
transparency technique described in Section IV allows us to
check once and for all that overrides will behave as expected,
rather than relying on multiple ad-hoc equivalence checks.

Another approach to arithmetic datapath verification also
uses ACL2 to verify RTL designs through intermediate models
written in a higher-level language called RAC (Restricted
Algorithmic C) [13], [14]. The correctness of an RTL design
is established by a two-step verification process that combines
sequential logic equivalence checking with interactive theorem
proving. First, an intermediate RAC model is hand-coded and
equivalence checked against the RTL implementation using a
commercial C-to-RTL equivalence checking tool. The RAC
model is then automatically translated to the logic of ACL2
using a shallow embedding scheme [15]. This translated model
can then be verified in ACL2 against a specification using
ACL2’s rewriter and arithmetic libraries. In contrast, our
methodology models the RTL behavior within ACL2 directly.
Therefore, we do not require a hand-coded intermediate model
written in a third language. While we also rely on equivalence
checking to prove the RTL model’s correspondence with an
ACL2 specification (either the full operation specification or a

lower-level algorithmic specification that must itself be proven
correct), this equivalence check occurs within ACL2 via the
FGL proof procedure and does not require a commercial C-
to-RTL equivalence checking tool.

The reFLect/Goaled framework [16], [17] (internal to Intel)
uses relational symbolic trajectory evaluation (rSTE) as its
proof engine for conjectures amenable to fully automatic
proof. A successful run of rSTE allows Goaled to use an axiom
similar to the override-free versions of theorems we generate
(such as our boothpipe-sum-correct in Section IV).
Such axioms are the method for obtaining facts about the
design in Goaled; there is no mathematical model of the
hardware design in Goaled independent of rSTE. We describe
the process of modeling the RTL under verification in Section
III-A.

III. VERIFICATION ENVIRONMENT

The hardware verification environment we use within ACL2
is based around an expression language called SVEX (for
Symbolic Vector Expressions). An SVEX may be either a con-
stant, a variable, or a function applied to subexpressions. There
are currently 48 such functions, including, e.g., bitwise AND,
concatenate, plus, multiply, etc., designed mainly to replicate
SystemVerilog operators. The values of SVEX expressions are
called 4vecs, and are vectors of 4-valued “bits” of 1, 0, X, Z,
following SystemVerilog semantics. Such a vector has finitely
many such bits, but the most-significant of these is considered
a sign bit as in two’s-complement arithmetic and imagined to
extend out to infinity. An SVEX expression may be evaluated
to a 4vec value given an environment, which is a mapping
from variables to 4vec values.

The formal model of a hardware design is ultimately
expressed as a finite state machine (FSM) with next-state
functions and output values given as SVEX expressions. The
FSM representation is a pair of two elements values and
nextstate, each of which is a mapping from variable names to
SVEX expressions. The variables used in all such expressions
are primary input and previous state signals. The keys bound
in the nextstate mapping are the previous state signals, where
the expression bound to each such signal gives the update
function for that state signal. The keys bound in the values
mapping are the driven signals of the design (that is, outputs
and internal signals but not primary inputs or previous-states),
and the expression bound to each one gives its current value.

With this formal model, we can run concrete simulations of
the hardware design and perform various design exploration
and debugging tasks. We have a tool to trace root causes of
unexpected values and can also write out waveforms from
simulations. We can also prove functional properties of the
design. We primarily use two engines for these proofs, both of
which are verified in ACL2. First, FGL [2], [3] is a bit-blasting
rewriter which translates the expressions and the properties
to be proved to a Boolean formula (and/inverter graph) and
proves it using SAT or combinational equivalence checking
methods. Second, for multipliers and nests of adders, we usu-
ally use VeSCMul [4], [6], a specialized rewriter implementing

150

the s-c-rewriting technique, which efficiently converts such
arithmetic formulas into a normal form of nests of sum and
carry operators.

As with most fully automatic proof procedures, it is crucial
to limit the scope of a proof. Decomposition proofs rely on
the efficiency of proving lemmas about portions of the design
in isolation, and therefore it is important not to involve the
fanin cones of the input signals of that portion. That is, for
such proofs we want to ignore the values to which these
internal signals are driven by surrounding logic, and instead
set (override) these with values of our choice. To allow this,
before creating the FSM we augment the design’s netlist with
override muxes, described below, that let us decide on a signal
by signal basis whether to let the signal operate as normal or
to override its value.

A basic property that we prove about this modified design
is override transparency: If we override a signal to the value
that it is already driven to, this override does not result in any
change to signal values. This property lets us take theorems
proved with overrides, each saying something like “if we
override signal s with value v at time t, then. . . ”, and derive
from them theorems about a run without overrides, of the form
“if the sampled value of signal s at time t is v, then. . . ”. These
latter theorems can be combined with other theorems about the
design, since they do not conflict in their assumptions about
what signals are overridden.

We also rely on the X-monotonicity of SVEX expressions,
relating to the information ordering in which a value of X
signifies that a bit’s value is unknown whereas 1, 0, or Z
are known values. If an expression is monotonic, then if you
replace an X bit with 1, 0, or Z in the environment under
which that expression is evaluated, each bit of its evaluation
either does not change or changes from X to 1, 0, or Z. This
allows us to generalize results from symbolic simulations with
X values: if we prove that the result of a symbolic simulation is
non-X under an environment where some inputs are bound to
X, then this result is identical if we change some of these input
bindings from X to other values. We generally do proofs by
symbolic simulation with any don’t-care inputs set to X values;
the results can then be generalized to theorems in which we
make no assumptions about these don’t-care inputs.

A. Model Build

We now give an overview of how an FSM is obtained from
a hardware design, briefly describing each step in the process.

1) Parse: SystemVerilog files are parsed into an abstract
syntax tree format called a VL design.

2) Elaborate: The parsed VL design is processed to resolve
parameters, function definitions, types/vector widths, etc.

3) Translate: The elaborated VL design is translated to
a simpler hierarchical format, called an SVEX design, with
many complex SystemVerilog features removed and expres-
sions, procedural blocks, etc. all translated to SVEX expres-
sions. The SVEX design hierarchy consists of modules which
only contain signal declarations, submodule instances, assign-
ments, and aliases between signals (which mainly occur due

to port connections). Signals in expressions may be referenced
with delay values to express sequential logic; here we use s′

to denote the previous time step’s value of s.
4) Flatten: The SVEX design hierarchy is expanded into

a flat list of assignments and aliases. E.g., an assignment a
= b within a module with two instances i and j would
become two assignments, i.a = i.b and j.a = j.b. A
port connection between a signal c in the top-level module
and a port signal d in an instance i within that module would
become an alias, c ↔ i.d.

5) Normalize Netlist: Canonical names for all signals are
chosen from among their aliases, and the mapping of each
signal to its canonical name is applied to the flattened assign-
ments. E.g., with an alias c ↔ i.d we would replace all oc-
currences of i.d with c. Additionally, assignments are com-
bined and split apart so that every driven signal has exactly one
assignment. For example, assignments {a[3:0], b[2:0]}
= c[6:0], a[5:4] = d[1:0] would become a[5:0]
= {d[1:0], c[6:3]}, b[2:0] = c[2:0].

6) X-monotonify: The normalized netlist may contain non-
X-monotonic operations (such as SystemVerilog’s === com-
parison operator). We replace these constructs with monotonic
ones and prove that the transformation is conservative. That
is, the new design may sometimes produce X values where
the old design did not, but otherwise they are equivalent.

7) Insert Override Muxes: For some subset of the driven
signals of the design that may be involved in a cutpoint for
decomposition, we insert override muxes. That is, for each
such signal s, we replace references to s with expressions
st ?⃗ sv : s. Here st and sv are new primary input variables,
respectively the override test and override value of s, and the
ternary ?⃗ : operator is if-then-else on corresponding bits of
the test and branches. Later when we have our FSM model,
this will allow us to override certain bits of s in an FSM run
by setting st to the bitmask of the bits we want to override and
sv to the values with which we want to override those bits.
The result of this is our final netlist. This step is verified to
produce no change in the logic when no signals are overridden
(all override tests st are false), and the override transparency
property relates the behavior when there are overridden signals
to the case where there are not.

8) Zero-delay compose: The final netlist is composed with
itself to obtain new expressions that no longer reference
driven signals (any appearing as a key in the key-value
pairs of the netlist), only primary inputs and delayed signals.
For example if our netlist contains assignments a = f(b,
c), b = g(c, d) where c and d are non-driven sig-
nals, self-composition would yield a = f(g(c, d), c),
b = g(c, d). Driven signals that cannot be eliminated
from these expressions by self-composition are replaced with
X; this conservatively deals with signals that are overcon-
strained (e.g. a = ˜a) or unconstrained (e.g. a = a). This
step results in formulas that are provably conservative relative
to any fixpoint composition of the netlist.

9) Create FSM: The result of the zero-delay compose step
is the values field of the FSM. The nextstate field is derived by

151

mapping all referenced delay variables s′ to the value bound
to key s, or to s itself if s is not a driven signal.

This FSM is the main formal model of a hardware design.
However, in the datapath domain, there is usually a particu-
lar stimulus and sampling pattern of interest. For example,
supplying the valid, opcode, and data input signals at the
first cycle and sampling the data output at the second cycle
might be the stimulus/sampling pattern of interest on a simple
latency-1 arithmetic unit. Usually instead of doing symbolic
simulation proofs directly on the FSM, we create a set of
SVEX expressions giving the result of applying the symbolic
stimulus pattern to the FSM and sampling the signals of
interest at the appropriate times, and do proofs with reference
to this object. We call such an object an SVTV (for SVEX Test
Vector). The evaluations of the expressions making up this
SVTV are provably the same as the corresponding sampled
values from the FSM run on the stimulus pattern.

The stimulus pattern used in creating an SVTV may include
overrides, either conditional or fixed. A proof with cutpoints
may be done with a single SVTV where the cutpoint signals
have both conditional overrides and sampled outputs at a
particular time step.

IV. DECOMPOSITION METHODOLOGY EXAMPLE

We illustrate our decomposition methodology using a simple
example from the public ACL2 community books reposi-
tory [18]. This proof shows the correctness of a 16x16-
bit multiplier with radix-4 Booth encoding, using a single
cutpoint at the partial product vector. We use a multiplier for
this example because a divide or square root would require
many more steps to be described, adding complexity to the
presentation that is not relevant to the illustration of the
decomposition method. However, an example showing the
verification of a radix-4 SRT 32-bit unsigned integer divider
is also publicly available [19].

The multiplier is proved correct using a single cutpoint at
the partial product vector. Thus, the proof is split into two
parts: correctness of the Booth encoding resulting in the partial
products, and the summation of the partial products to compute
the final result. The specifications for these two parts are
proved to compose to a multiply (Figure 1); we do not cover
the details of this proof in this paper as it is a standard ACL2
proof using conventional interactive theorem proving methods.

(defthm sum-pps-of-pps-spec
(equal (sum-pps 8 16 0 (pps-spec 8 16 0 a b))

(* (logext 16 b) (logext 16 a))))

Fig. 1. Specification-level composition theorem

Here a and b are the data inputs to be multiplied,
pps-spec is the specification for the Booth encoder,
sum-pps is the specification for the summation tree, and
logext is the sign extension operator. The eight partial prod-
ucts (produced by pps-spec and consumed by sum-pps)
are packed into a single vector. This says that the Booth
encoding followed by partial product summation produces the
product of the low 16 bits (sign-extended) of the two inputs.

(defsvtv$ boothpipe-run
:design *boothpipe*
:cycle-phases (list (sv::make-svtv-cyclephase

:constants ’(("clk" . 0))
:inputs-free t
:outputs-captured t)

(sv::make-svtv-cyclephase
:constants ’(("clk" . 1))))

:stages ((:label c0
:inputs (("en" en :hold t)

("a" a)
("b" b)))

(:label c1)
(:label c2
:overrides (("pps" pps

:cond pps-ovr
:output pps)))

(:label c3
:outputs (("o" o)))))

Fig. 2. Boothpipe SVTV declaration

It then remains to show that the hardware design implements
pps-spec and sum-pps. To begin, we read, parse, and
translate the design to the hierarchical SVEX form, and
following the rest of the steps of Subsection III-A, creating an
FSM and an SVTV. The form to introduce the SVTV is listed
in Figure 2. This describes the clock cycle, specifying that
inputs are to be supplied and outputs sampled on the clock-0
phase of each cycle, then describes the stimulus and sampling
pattern: we supply the inputs and clock enable signal at cycle
0 (labeled as c0 in Figure 2), then at cycle 2 both sample as
output and conditionally override the partial products, then at
cycle 3 sample the output. The :hold keyword, set to t in
Figure 2, indicates that the associated assigned value, which
is en, will be held until end (or until the signal ‘‘en’’ is
set again, which is not the case in this example).

The SVTV resulting from this is an object containing SVEX
expressions for the two outputs, pps and o, in terms of the
inputs en, a, b, pps, and pps-ovr. (Note that the input and
output namespaces are distinct, allowing both an input and an
output to be named pps.) These expressions can be evaluated
on concrete values, e.g., if we set en to 1, a to 3, b to 4,
and pps-ovr to 0 — meaning the partial product vector is
not overridden, so the setting of pps is irrelevant — then
the expression associated with output o evaluates to 12. The
intermediate value pps represents the eight partial products
packed into a single vector.

To verify this design, we prove two theorems automati-
cally using FGL, one about the Booth encoding step and
one about the partial product summation. These are listed
in Figure 3. The SVTV representing the hardware model
behavior is evaluated using the svtv-run function, which
evaluates the expressions in the SVTV under the given assign-
ment (environment) mapping input variables to their values.
The svtv-run call returns an output environment, and the
signal of interest is looked up from this environment using
svex-env-lookup. Each of these theorems is fairly limited
due to the stringent assumptions about the environments under
which the SVTV is evaluated: they are exactly a list of cons

152

pairs of a certain length, with keys in a certain order, etc.
Unfortunately, the assumptions made by the two theorems
are not compatible with each other, so the theorems cannot
be composed directly. In particular, in the second theorem,
the evaluation environment sets pps-ovr to -1 (the vector
containing all 1-bits), which means that the signal ‘‘pps’’
is overridden to the value of the variable pps; this signal is
not overridden in the first theorem.

(fgl::def-fgl-thm boothpipe-pp-correct-lemma
(implies
(and (unsigned-byte-p 16 a)

(unsigned-byte-p 16 b))
(let* ((env (list (cons ’en 1)

(cons ’a a)
(cons ’b b)))

(run (svtv-run (boothpipe-run) env
:include ’(pps)))

(pps (svex-env-lookup ’pps run)))
(equal pps (pps-spec 8 16 0 a b)))))

(fgl::def-fgl-thm boothpipe-sum-correct-lemma
(implies
(unsigned-byte-p 144 pps)
(let* ((env (list (cons ’en 1)

(cons ’pps-ovr -1)
(cons ’pps pps)))

(run (svtv-run (boothpipe-run) env
:include ’(o)))

(o (svex-env-lookup ’o run)))
(equal o (loghead 32 (sum-pps 8 16 0 pps))))))

Fig. 3. Partial product and summation tree lemmas

However, due to the override transparency and X-
monotonicity properties of the design, we can derive from
these theorems more general ones, shown in Figure 4, that
can be composed together. These theorems have two main
differences. First, the environments are not fixed in shape,
but instead are free variables with assumptions about the
bindings of certain keys. Second, the ‘‘pps’’ signal that
was overridden in the second lemma is no longer assumed
to be overridden. In the lemma, the override value for that
signal was also passed to the sum-pps specification function;
in the generalized theorem, this is replaced by the sam-
pled value of the ‘‘pps’’ signal from the outputs of the
SVTV run. In fact, the final hypotheses of both theorems
(svtv-override-triplemaplist-envs-match) say
that no signals are overridden in the environment (that is, none
of the override test variables of the SVTV are set with any 1-
bits). This generalized theorem can be derived from the lemma
because we have the override transparency property, namely
that we get the same results if we do not override ‘‘pps’’
as we do if we override it with its own sampled value.

These theorems can be composed to produce the top-level
theorem of Figure 5. The hypotheses of the final theorem
are the same as those of the partial product correctness
theorem. This then says that the partial products sampled
from the run equal pps-spec. This (by another theorem not
shown) is a 144-bit unsigned value, which suffices to allow
the summation correctness theorem to apply. This shows that
the result equals the zero-extension (loghead) at 32 bits

(defthm boothpipe-pp-correct
(let* ((a (svex-env-lookup ’a env))

(b (svex-env-lookup ’b env))
(en (svex-env-lookup ’en env))
(run (svtv-run (boothpipe-run) env))
(pps (svex-env-lookup ’pps run)))

(implies
(and (equal en 1)

(unsigned-byte-p 16 a)
(unsigned-byte-p 16 b)
(svtv-override-triplemaplist-envs-match
(boothpipe-run-triplemaplist) env ’nil))

(equal pps (pps-spec 8 16 0 a b)))))

(defthm boothpipe-sum-correct
(let* ((en (svex-env-lookup ’en env))

(run (svtv-run (boothpipe-run) env))
(pps (svex-env-lookup ’pps run))
(o (svex-env-lookup ’o run)))

(implies
(and (equal en 1)

(unsigned-byte-p 144 pps)
(svtv-override-triplemaplist-envs-match
(boothpipe-run-triplemaplist) env ’nil))

(equal o (loghead 32 (sum-pps 8 16 0 pps))))))

Fig. 4. Generalized partial product and summation tree theorems

of the sum-pps of the pps-spec, which as previously
shown in sum-pps-of-pps-spec (Figure 1) equals the
multiplication of the sign-extensions of the inputs.

(defthm boothpipe-correct
(let* ((a (svex-env-lookup ’a env))

(b (svex-env-lookup ’b env))
(en (svex-env-lookup ’en env))
(run (svtv-run (boothpipe-run) env))
(o (svex-env-lookup ’o run)))

(implies
(and (equal en 1)

(unsigned-byte-p 16 a)
(unsigned-byte-p 16 b)
(svtv-override-triplemaplist-envs-match
(boothpipe-run-triplemaplist)
env ’nil))

(equal o (loghead 32 (* (logext 16 a)
(logext 16 b)))))))

Fig. 5. Top-level correctness theorem for the 16-bit multiplier

Manual derivation of the generalized theorems from the
automatically-proved lemmas would be tedious and repet-
itive, but this is instead automated by a macro called
def-svtv-generalized-thm, which first proves the
lemma and then generalizes it. This macro also supports
setting defaults for its arguments, so the theorem forms tend to
be more concise than writing the theorem directly. The forms
for the two decomposition theorems and the final theorem
are shown in Figure 6, after the settings for default options.
The final theorem uses the :no-lemmas option to prove
the generalized theorem directly via rewriting rather than by
proving a lemma with FGL first.

The decomposition methodology illustrated in this example
makes it easy to prove lemmas about isolated parts of the
design and then put these together into a top-level proof in a
logically sound manner. While the multiplier in this example

153

(local
(progn
(table svtv-generalized-thm-defaults

:svtv ’boothpipe-run)
(table svtv-generalized-thm-defaults

:unsigned-byte-hyps t)
(table svtv-generalized-thm-defaults

:input-var-bindings ’((en 1)))))

(def-svtv-generalized-thm boothpipe-pp-correct
:input-vars (a b)
:output-vars (pps)
:concl (equal pps (pps-spec 8 16 0 a b)))

(def-svtv-generalized-thm boothpipe-sum-correct
:override-vars (pps)
:output-vars (o)
:concl (equal o (loghead 32 (sum-pps 8 16 0 pps))))

(def-svtv-generalized-thm boothpipe-correct
:input-vars (a b)
:output-vars (o)
:concl (equal o (loghead 32 (* (logext 16 a)

(logext 16 b))))
:no-lemmas t)

Fig. 6. def-svtv-generalized-thm forms for main theorems

could be proved without decomposition, the rest of this paper
focuses on divide and square root implementations, which at
the current state of the art cannot be proved correct by top-
level, fully automated methods. This newly developed decom-
position methodology allows us to approach such designs by
proving the functionality of parts of the design that can be
approached automatically, then stitching together these proofs
into a top-level correctness theorem.

A further demonstration of this methodology used to prove
correctness of a radix-4 SRT 32-bit unsigned integer divider
is available in the ACL2 community books repository [19].
The divider in this example takes 18 clock cycles to finish the
computation, and the needed lemmas about each iteration are
generated by a macro since the same basic SRT divide step
is repeated 17 times. This example shows the decomposition
methodology working on a larger scale, with one cutpoint for
each iteration of the partial remainder plus a few more for
initialization and completion.

V. DIVIDE AND SQUARE ROOT VERIFICATION APPROACH

Our general approach for divide and square root verification
is composed of the following steps:

1) Define top-level specification functions: Specification
functions for each operation are written in ACL2. For integer
divides, the specifications only apply the built-in ACL2 integer
divide function and then check for overflows. For floating point
operations, the specification functions are necessarily more
complicated; we ensure their accuracy using the following
principles.

• Test comprehensively. Each specification function can be
efficiently executed. For operations that have existing
implementations in hardware, we run millions of tests of
our specifications against the hardware implementations.
We test all combinations of input floating-point types

on each operation to ensure that special-case behavior
is covered, and additionally craft randomized testbenches
to cover a broad range of normal arithmetic operands.

• Share code between operations as much as possible. In
particular, the most complicated part of floating point
arithmetic specifications is the post-compute rounding
and exceptions, which is the same for all arithmetic
operations and which we therefore handle using the same
function. This routine is tested extensively, especially
on convert from double precision to single precision, an
operation on which it is easy to hit all the major post-
compute corner cases.

• Define core arithmetic operations as simply as possible.
For divide, we left-shift the dividend mantissa by a certain
amount, then divide it by the divisor mantissa using the
built-in ACL2 integer divide operation. Inexactness is
determined by checking whether the remainder of that
divide is 0. The shift amount is computed so that the
result of the divide will contain enough significant bits
to correctly round the result. The square root operation
is similar, shifting the mantissa left then applying a
truncating integer square root function.

2) Mathematically model hardware design components:
We decompose the design into pieces that we can model math-
ematically and that can be proved to satisfy their specifications
automatically. As the strength of the available automatic proof
methods improves, we can choose larger chunks of the design
to make the specifications simpler and the high-level proof
easier to compose. For example, we used to decompose mul-
tiplier components of the divide unit into Booth encoding and
summation tree parts, but now we use VeSCMul to prove the
multipliers correct without decomposition. The specification
for each chunk may be either functional (the outputs are
proved equivalent to some function of the inputs) or relational
(some property holds of the outputs and inputs, but the exact
behavior is not specified). When relational specifications are
sufficient, they can be less susceptible to design changes: as
long as the properties still hold, changes in the behavior of
the corresponding parts do not affect the proofs. For example,
often divide and square root implementations use lookup table
driven approximations for certain functions; we do not need
to specify the exact values of these approximations, only that
they have a certain relative error. Thus, any design change
in lookup table constructions would not affect such proofs as
long as their bounds still hold.

3) Prove algorithmic bounds: Signals in hardware are
defined with fixed bit widths. In iterative arithmetic algorithms,
the bounds on a value such as the partial remainder at one step
in the algorithm depend on the bounds of the previous step; if
the known bounds for that previous step are not tight enough,
then we cannot prove that the next step does not overflow.
However, it is not always obvious what bound is needed for
a particular value in order to complete the full proof. For
square root, in particular, we found it important to bound
not only the partial remainders at each step but additionally
derived terms such as the product of a partial remainder and its

154

corresponding root digit. Reasoning about bounds is supported
by the def-bounds tool [8], [9].

4) Compose sub-proofs to prove correctness of the inte-
ger/mantissa operation: We typically proceed from the inputs
toward the outputs, showing that each cutpoint signal is some
function of or satisfies some property relative to the opera-
tion’s inputs. For example, suppose we already formalize the
relationship of the next partial quotient Qi+1 and remainder
Ri+1 in terms of the current partial quotient Qi and remainder
Ri, and suppose we also establish the relationship of Qi and
Ri in terms of primary inputs N (dividend) and D (divisor),
we then compose these facts to form a new relationship of
Qi+1 and Ri+1 in terms of N and D as shown below, and so
on for subsequent steps.{

Qi = fi(N,D)

Ri = gi(N,D)
∧

{
Qi+1 = f(Qi, Ri)

Ri+1 = g(Qi, Ri, D)

⇒

{
Qi+1 = fi+1(N,D)

Ri+1 = gi+1(N,D)

However, we can also take composition steps in a different
order if it makes more sense. For example, if an intermediate
cutpoint ci is needed between Ri+1 and Ri, we might first
eliminate ci to resolve the function of Ri+1 in terms of Ri

without ever resolving ci in terms of the operation’s inputs.
5) Verify floating-point rounding, exponents, exceptions,

and special cases: For this proof we arrange that our specifica-
tion function has extra inputs that allow us to replace the com-
puted pre-round mantissa result and inexact-mantissa flag with
arbitrary values, effectively overriding them. Similar to the
override transparency property for our hardware models, we
also prove here that overriding these signals with their correct
values does not affect the function’s value. We override these
values in both the specification and hardware implementation
and show that the final result and flags in terms of the primary
inputs and these overridden values agree with our specification.
This is done automatically with FGL. This theorem can then
be composed with the result of the previous step to obtain the
top-level correctness theorem for a floating point operation,
without overrides in the specification or hardware model.

6) Equivalence check SIMD lanes: For single-
instruction/multiple-data (SIMD) floating point operations,
we use Boolean equivalence checking (via FGL) to verify the
top-level SIMD operation given the correctess of the scalar
(single-lane) operation. A simple way to do this in a single
step would be to equivalence check the SIMD operation
against a composition of n invocations of the scalar operation
(where n is the number of SIMD lanes for the operation).
This works for some designs, but lacks flexibility and is often
not efficient. Instead we typically break down the problem by
first checking the equivalence of each of the n SIMD lanes
with the scalar operation, then checking that the full SIMD
operation is equivalent to the composition of all n separate
SIMD lanes. To run an operation on SIMD lane i (as in
both of these equivalence checks), we shift the appropriate
inputs to input lane i and populate the inputs for the other

TABLE I
VERIFICATION TIMES OF VARIOUS DIVIDE AND SQUARE ROOT

INSTRUCTIONS

Int instruction Verification time
DIV8 4m 27s
DIV16 7m 7s
DIV32 5m 37s
DIV64 5m 53s
IDIV8 4m 6s
IDIV16 4m 13s
IDIV32 4m 15s
IDIV64 7m 49s

FP instruction Verification time
DIVSS 3m 30s
DIVPS 4m 11s
DIVSD 14m 13s
DIVPD 16m 4s

SQRTSS 7m 29s
SQRTPS 8m 23s
SQRTSD 15m 4s
SQRTPD 16m

lanes with inputs that yield no FP exceptions (e.g., 0.0/1.0
for divide, 0.0 for square root). This multi-step methodology
is typically faster than the single-step method and allows for
optimizations of the lane-to-scalar equivalence checks, such
as case splitting and further decomposition.

VI. RESULTS

Table I shows the times consumed by executing our proof
scripts of various divide and square root instructions on a
machine with an 8-core Intel Xeon E-2378G processor and
128 GB memory. All of these instructions were implemented
in an Intel project. For integer operations, DIVn and IDIVn
perform n-bit unsigned and signed integer divides, respec-
tively. These operations divide a 2n-bit dividend by an n-
bit divisor producing an n-bit quotient. The proof time went
from about 4 minutes for IDIV8 to 8 minutes for IDIV64. For
floating-point operations, we verified four DIVXY and four
SQRTXY variants, where X is either S or P denoting scalar
or packed (SIMD), and Y is either S or D denoting single or
double precision [20]. SIMD operations consisted of either
four single-precision lanes or two double-precision lanes.
Decomposition was applied only to the scalar operations;
the packed operations were then verified using equivalence
checking. As shown in Table I, the run-time gap between the
scalar and packed versions of the same precision format is
fairly small, indicating the effectiveness of the equivalence
checking. The numbers also illustrate the scalability of our
decomposition proof method: all operations were verified in
minutes. Additionally, all these proofs may be done in parallel.

The initial development of the first divide proof took about
three person-months, and the first square root proof three more.
This compares very favorably to other from-scratch verifica-
tions of similarly complex industrial implementations. Addi-
tionally, this development was concurrent with improvements
to the ACL2/SVTV decomposition framework that enabled
these proofs, so a similar from-scratch proof effort could now
likely be completed much more quickly. Major changes to
proofs, such as verifying a double-precision operation once
the single-precision version is already verified or updating to
accommodate an extensive change in the design, generally take
one to four weeks. Routine design changes often do not require
modifications to the proof scripts and otherwise usually only
need minor changes taking less than a day.

155

Nightly regressions run all collected proofs so as to catch
design bugs quickly. When bugs are found, fixes can be
iterated on very quickly because the time from parsing a new
model to finishing the proof or finding a counterexample is
between 5 minutes and an hour, depending on the operation.

VII. CONCLUSION

We described a methodology for formal verification of
divide and square root operations based on the ACL2/SVTV
hardware verification framework. We use automatic proof tools
such as FGL and VeSCMul on portions of the design that play
to their strengths. The ACL2/SVTV framework automatically
generalizes the resulting theorems, which initially pertain only
to a run of the design in which some internal signals have been
overridden, to obtain composable theorems that pertain to a
run without such overridden signals. The resulting generalized
theorems can be composed together in a manner that is
idiomatic and natural in ACL2.

This methodology has been used to successfully verify
state-of-the-art, highly optimized implementations of these
operations in an industrial setting. Development of new proofs
is contingent on understanding the algorithm implemented by
the design, but not the low-level details of its implementation;
in practice, new proofs can be developed in one to several
person-weeks (depending on the complexity of the design)
and updating proofs for major design changes can usually be
completed within a person-month.

The proofs resulting from this methodology take minutes
to run, allowing nightly regression tests to quickly catch any
new bugs or needed proof updates. Each such proof culminates
in a top-level theorem verified in ACL2 stating that the whole
operation in the hardware design satisfies its specification. The
proofs have been updated for several revisions of the RTL
designs in question without encountering scalability issues or
major impediments to the success of the methodology.

REFERENCES

[1] S. Swords, “ACL2/SVTV Source Distribution,” Accessed: 2024.
[Online]. [Online]. Available: https://github.com/acl2/acl2/tree/master/
books/centaur/sv

[2] S. Goel, A. Slobodova, R. Sumners, and S. Swords, “Balancing Au-
tomation and Control for Formal Verification of Microprocessors,” in
Computer Aided Verification, A. Silva and K. R. M. Leino, Eds. Cham:
Springer International Publishing, 2021, pp. 26–45.

[3] S. Swords, “New Rewriter Features in FGL,” in Proc of the Sixteenth In-
ternational Workshop on the ACL2 Theorem Prover and its Applications
(ACL2 2020), 2020, pp. 32–46.

[4] M. Temel, “VeSCMul: Verified Implementation of S-C-Rewriting for
Multiplier Verification,” in Proc of the 30th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2024), 2024, pp. 340–349.

[5] ——, “Verified Implementation of an Efficient Term-Rewriting Algo-
rithm for Multiplier Verification on ACL2,” in Proc of the Seventeenth
International Workshop on the ACL2 Theorem Prover and its Applica-
tions (ACL2 2022), 2022, pp. 116–133.

[6] M. Temel, A. Slobodova, and W. A. H. Jr., “Automated and Scalable
Verification of Integer Multipliers,” in Computer Aided Verification 2020
(CAV 2020), 2020, pp. 485–507.

[7] M. Kaufmann, J. S. Moore, S. Ray, and E. Reeber, “Integrating external
deduction tools with ACL2,” Journal of Applied Logic, vol. 7, no. 1,
pp. 3–25, 2009, special Issue: Empirically Successful Computerized
Reasoning.

[8] S. Swords, “Extended Abstract: A Bound-Finding Tool for Arithmetic
Terms,” in Proc of the 18th International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2 2023), 2023, pp. 11–15.

[9] ——, “Def-bounds,” Accessed: 2024. [Online]. [Online].
Available: https://www.cs.utexas.edu/users/moore/acl2/manuals/current/
manual/?topic=ACL2 DEF-BOUNDS

[10] A. Slobodova, J. Davis, S. Swords, and W. Hunt, “A Flexible Formal
Verification Framework for Industrial Scale Validation,” in Proc of the
Ninth ACM/IEEE International Conference on Formal Methods and
Models for Codesign (MEMOCODE2011), 2011, pp. 89–97.

[11] S. Goel, A. Slobodova, R. Sumners, and S. Swords, “Verifying X86
Instruction Implementations,” in Proceedings of the 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, ser. CPP
2020. New York, NY, USA: Association for Computing Machinery,
2020, pp. 47–60.

[12] D. Rager, J. Ebergen, D. Nadezhin, A. Lee, C. Chau, and B. Selfridge,
“Formal Verification of Division and Square Root Implementations, an
Oracle Report,” in Proc of the 2016 Formal Methods in Computer-Aided
Design (FMCAD), 2016, pp. 149–152.

[13] D. M. Russinoff, Formal Verification of Floating-Point Hardware De-
sign: A Mathematical Approach, 2nd ed. Springer, 2022.

[14] D. Russinoff, J. Bruguera, C. Chau, M. Manjrekar, N. Pfister, and
H. Valsaraju, “Formal Verification of a Chained Multiply-Add Design:
Combining Theorem Proving and Equivalence Checking,” in Proc of the
2022 IEEE 29th Symposium on Computer Arithmetic (ARITH), 2022, pp.
120–126.

[15] D. M. Russinoff, “RAC Source Distribution,” Accessed: 2024.
[Online]. [Online]. Available: https://github.com/acl2/acl2/tree/master/
books/projects/rac

[16] J. O’Leary, R. Kaivola, and T. Melham, “Relational STE and theorem
proving for formal verification of industrial circuit designs,” in 2013
Formal Methods in Computer-Aided Design, 2013, pp. 97–104.

[17] R. Kaivola and J. O’Leary, “Verification of Arithmetic and Datapath
Circuits with Symbolic Simulation,” in Handbook of Computer Archi-
tecture, A. Chattopadhyay, Ed. Singapore: Springer Nature Singapore,
2022, pp. 1–52.

[18] S. Swords, “Boothpipe-mini tutorial example,” Accessed: 2024.
[Online]. [Online]. Available: https://github.com/acl2/acl2/tree/master/
books/centaur/sv/tutorial/boothpipe-mini.lisp

[19] ——, “SRT-4 divider tutorial example,” Accessed: 2024.
[Online]. [Online]. Available: https://github.com/acl2/acl2/tree/master/
books/centaur/sv/tutorial/srt-div

[20] Intel Corporation, “Software Developer Manuals for Intel®
64 and IA-32 Architectures,” Accessed: 2024. [Online].
[Online]. Available: https://www.intel.com/content/www/us/en/support/
articles/000006715/processors.html

156

