
Formal Verification of the IEEE P3109 Standard for
Binary Floating-point Formats for Machine Learning

Christoph M. Wintersteiger
Imandra Inc

christoph@imandra.ai

Abstract—We present a formalization of an upcoming standard
for floating-point formats for machine learning by the IEEE
P3109 working group. This includes a definition of a number
of small (< 16 bit) formats and a specification of arithmetic
functions that operate on such numbers, as well as format
conversion function, including conversions to and from IEEE
754 formats. We report on our experience with the use of
an automated theorem prover for verification and analysis of
our formalization of the specification, and on the utility of the
formalization in future implementations of P3109-compliant
hardware and software.

1. Introduction

Progress in machine learning, and artificial intelligence
in general, has been tremendous and it still continues at rapid
speed. The arithmetic requirements for these systems are
significantly different from other domains, for instance the
precision of such operations is often much lower. Multiple
generations of new hardware designs that incorporate low-
precision floating-point cores are now in practical use. With
different points of focus for each hardware developer, those
floating-point cores do not have a common semantics how-
ever, and it can be challenging to port an application from
one platform to another. This motivates the design of a new
standard that is broad enough to cover the requirements of
most applications, but at the same time provides a common
semantics that improves portability and, in general, makes
them more predictable. The IEEE working group P3109 [1]
is currently working on such a standard and their latest
draft report [2] defines all of the operations intended to be
included, with some work on the precision and rounding of
operations still in progress.

Floating-point numbers have been of interest to the
formal verification community for a long time. One of the
early efforts was by Barrett, who developed a formalization
of IEEE 754 in Z-notation [3] as did Harrison in HOL
light [4], [5]. Recently, Yu [6] started porting Harrison’s
formalization to Isabelle proof assistant [7], and an ef-
fort to develop a formalization in Coq led by Boldo and
Melquiond [8]. Today, Satisfiability Modulo Theories (SMT)
solvers [9] are a crucial component in theorem provers and
program verifiers. Their standard set of supported theories
now includes support for a theory of floating-point numbers

that is close to IEEE 754, but that is parametrizable by bit-
widths for exponents and significands.

2. Background

P3109 defines formats for 3 to 15-bit floating-point
numbers, each with a significand precision of one up to
n−1 bits (including a hidden significand bit). P3109 numbers
include positive and negative infinities as well as a single
NaN without payload and a single zero. It further specifies
the usual arithmetic operations, square roots, and natural and
binary logarithms and exponentials. Additionally it includes
versions of addition and multiplication with (log-scale) scal-
ing factors and a fused-multiply-add operation that takes a
(scaled) IEEE 754 value as a summand alongside P3109
values and produces an IEEE 754 result. For more details
on these operations, see the interim report of the working
group [2].

Our work is based on ImandraX, the latest generation of
theorem provers and program verifiers from Imandra [10].
It accepts input in the Imandra Modelling Language (IML),
a subset of OCaml with minor modifications and additions.
IML is a strongly-typed functional language that supports
polymorphic higher-order recursive functions, but does not
support exceptions or assertions, such that functions are
always total. (It being a dialect of ML, note that (f x y)
represents a function call equivalent to f(x, y) in other
languages.) It does not feature automatic type conversions
or operator overloading. Theorems are stated in terms of
input variables that are implicitly universally quantified,
but the language does not support explicit quantifiers or
alternation. This is by design, to keep verification problems
and code complexity on a lower level (complexity-theoretic
and otherwise), while supporting just enough to tackle most
problems encountered in industrial applications.

The type int represents mathematical (unbounded)
integers and a real represents a mathematical (non-
approximated) real. We use extended reals, i.e. reals with
the addition of infinity (but not NaN), for which the type
is ExReal.t. Operations on extended reals require us to
exclude some combinations of inputs. For instance, the
result of an addition of a positive and a negative infinity
is undefined. One of the goals of our formalization is to
enable us to prove formally that the P3109 specification
never depends on any such undefined cases, which it often

157

2025 IEEE 32nd Symposium on Computer Arithmetic (ARITH)

2576-2265/25/$31.00 ©2025 IEEE
DOI 10.1109/ARITH64983.2025.00032

achieves by explicit specification of special cases before
the operation on extended reals is used. Since the language
does not support operator overloading, we add a dot to the
arithmetic operators one extended reals, e.g. +. for addition.

Types are usually defined within their own modules,
using the module name to identify the type in question. For
instance, we use the Result.t type to track success and
errors:

module Result = struct
type (a, b) t = Ok of a | Error of b

end

This means, a function returning a Result.t, either returns
an Ok with payload of type a, or an Error of type b.
(Here, we only use errors of type string.)

On the theorem proving and verification side, ImandraX
has many advanced features like a symbolic model checker,
automated induction, a powerful simplifier and symbolic
execution engine with lemma-based conditional rewriting
and forward-chaining, composable tactics, counterexamples,
state-space decompositions, and decision procedures for var-
ious theories.

SMT solvers like Z3 [11], CVC5 [12], and Math-
SAT [13] support the SMT-LIB theory of floating-point
numbers, which is largely based on IEEE 754-2008, but
with support for custom exponent and significand widths
and a single NaN without payload. Many modern program
verifiers employ SMT solvers to discharge first-order ver-
ification conditions as they often perform well out of the
box or with minor adjustments. It is important to note that
ImandraX also uses Z3, but our formalization of P3109
does not make use of the SMT-LIB theory of floating-point
numbers, instead it is based on (mathematical) integers and
(extended) reals.

3. Formalization

Our formalization starts with the definition of a type for
P3109 numbers, for which we use (unbounded) integers to
support varying bit-widths:

type t = int

For n-bit P3109 numbers, integers outside of [0,2n − 1] are
rejected during decoding (producing an Error).

The different P3109 formats are simply an enumeration
of constants:

module Format = struct
type t = B3P1 | ... | B8P2 | B8P3 | B8P4 |

B8P5 | B8P6 | B8P7 | ... | B15P14
...

end

where p in BnPp indicates the precision of the format (i.e.
the number of significand bits, including the hidden one).

Projection specifications are combinations of saturation
and rounding modes (Listing 1). and the function project
applies saturation and rounding according to such projection
specifications.

module SaturationMode = struct
type t = bool

end

module RoundingMode = struct
type t = TowardZero | TowardNegative |

TowardPositive | NearestTiesToEven |
NearestTiesToAway

end

module Projection = struct
type t = SaturationMode.t * RoundingMode.t

end

Listing 1. Projections

With this, we are now ready to investigate an example of
the definition of scaled addition. Figure 1 shows the textual
definition in the standard documents, while Listing 2 shows
our formalization thereof. The operation takes two P3109
values (x and y) as well as two log-scale (integer) scaling
factors sx and sy . P3109 leaves the choice of supported
ranges for sx and sy to the implementation, so that for our
formalization we assume that they are unbounded integers,
such as to cover all compliant choices of ranges.

The specification of the behavior of operations is by
pattern matching with the first case in top-down order that
applies defining the behavior (∗ means "anything"). In this
case, the operation returns a NaN when either of the inputs
is a NaN, or when they are infinities of opposite signs.
Otherwise, the result is X × 2sx + Y × 2sy , where X and
Y are the decoded P3109 values, i.e. their equivalent in
the extended reals (still including infinities of equal signs),
computed by decode. The result is then saturated and
rounded by the function Project. If any of the intermediate
functions produces an Error, it is propagated to the outside,
i.e. the return value of internal_add_scaled would then
be an Error too.

Of course, the actual (textual) specification always re-
turns a P3109 value (z) and not a Result.t. We therefore
define the (external) formal specification of add_scaled
by propagating successful results and, for now, by turning
errors into NaNs, as shown in Listing 3. (Note that the return
type is now Float8.t.) We know however, that this error
case is in fact unreachable, and we can show this by proving
the theorem given in Listing 4, which asserts that the result
of internal_add_scaled is always an Ok. The proof of
this theorem is relatively short and essentially consists of
a path analysis: first we prove that decode and project
never return errors (similarly to the theorem in Listing 4),
which implies that the last two Error cases are unreachable,
as well as the path through project, leaving only the
potential error as a result of evaluation of the arithmetic
term on extended reals. Since *., +., and ^. are defined
on all combinations of infinities possibly remaining after
the special case handling at the beginning of the function
(mainly ∞+∞ and −∞+−∞ and a potential ±∞× 0), this
is also relatively easy to show. ImandraX finds these proofs

158

Scaled addition
Compute X × 2sx + Y × 2sy , and return a P3109 value.
Scaling is applied in the extended reals, before projection
to the target format.

Signature
AddScaled fx , fy , fz ,π(x, sx, y, sy) → z

Parameters
fx : format of x
fy : format of y
fz : format of z
π : projection specification

Operands
x : P3109 value, format fx
sx : integer log-scale factor for x
y : P3109 value, format fy
sy : integer log-scale factor for y

Output
z : P3109 value, format fz

Behavior
AddScaled(NaN, ∗, ∗, ∗) → NaN
AddScaled(∗, ∗, NaN, ∗) → NaN
AddScaled(-Inf, ∗, Inf, ∗) → NaN
AddScaled(Inf, ∗, -Inf, ∗) → NaN
AddScaled(x, sx , y, sy) → Project fz ,π(Z), where

Z = X × 2sx + Y × 2sy
X = Decode fx (x)
Y = Decode fy (y)

Figure 1. Textual specification of scaled addition

let internal_add_scaled
(f_x : Format.t) (f_y : Format.t)
(f_z : Format.t) (pi : Projection.t)
(x : Float8.t) (s_x : int)
(y : Float8.t) (s_y : int)
: (t, string) Result.t =
let open NaNOrExReal in
match x, y with
| _, y when y = nan -> Ok nan
| x, _ when x = nan -> Ok nan
| x, y when x = ninf && y = pinf -> Ok nan
| x, y when x = pinf && y = ninf -> Ok nan
| x, y ->
let x = decode f_x x in
let y = decode f_y y in
(match x, y with
| Ok NaN, _ | _, Ok NaN -> Ok nan
| Ok (XR x) , Ok (XR y) ->

let open ExReal.ResultInfix in
(match ((Ok x) *. (2 ^. s_x)) +.

((Ok y) *. (2 ^. s_y)) with
| Ok z -> project f_z pi z
| Error e -> Error e)

| _, Error e -> Error e
| Error e, _ -> Error e)

Listing 2. Formal specification of scaled addition (internal)

let add_scaled
(f_x : Format.t) (f_y : Format.t)
(f_z : Format.t) (pi : Projection.t)
(x : Float8.t) (s_x : int)
(y : Float8.t) (s_y : int)
: Float8.t =
match
internal_add_scaled

f_x f_y f_z pi x s_x y s_y
with
| Ok x -> x
| Error _ -> nan (* unreachable by theorem

internal_add_scaled_ok *)

Listing 3. Formal specification of scaled addition (external)

theorem internal_add_scaled_ok
(f_x : Format.t) (f_y : Format.t)
(f_z : Format.t) (pi : Projection.t)
(x : Float8.t) (s_x : int)
(y : Float8.t) (s_y : int) =
Result.is_ok (Float8.internal_add_scaled

f_x f_y f_z pi x s_x y s_y)

Listing 4. Theorem stating that internal_add_scaled always returns
an Ok

fully automatically once given the right theorems to prove.
Some of the intermediate theorems that allow us to

get short proofs for the top-level theorems are of different
character. For instance, the function project (Listing 5)
employs within it the function encode, which encodes an
extended real number into a P3109 number. It only succeeds
if the input is within the range of the respective floating-
point format (within smallest and largest representable num-
bers). To guarantee that project never fails, we thus prove
that saturate produces results that are indeed always
within the range of the format. Once equipped with such a
generic result, many of the other proofs become significantly
shorter as they can simply re-apply the theorem instead of
performing costly numerical analysis.

In total, the formalization of P3109 is about 3 kloc
containing 28 theorems of the form above, 34 intermediate
lemmas, 121 theorems about format ranges, 83 termination
proofs, and 91 test cases (for a total of 357 proof obliga-
tions), which ImandraX discharges in 23 minutes of CPU

let project
(f : Format.t) (pi : Projection.t)
(x : ExReal.t)
: (t, string) Result.t =
let _, p, b, m = Format.

get_format_parameters f in
let sat, rnd = pi in
let r : ExReal.t = round_to_precision p b

rnd x in
let s : ExReal.t = saturate m sat rnd r in
encode f (NaNOrExReal.XR s)

Listing 5. Formal specification of projection

159

time on an Intel i9-12900KF.

4. Additional benefits

Our primary motivation for developing a formal version
of the P3109 specification is to find inconsistencies within
the standard itself, while the standard is still being devel-
oped. This gives us confidence that the standard itself speci-
fies all of the necessary properties of formats and operations
and that it is indeed implementable in practice. While a
significant amount of that can arguably be achieved with
weaker methods, a full formalization comes with additional
benefits:
• Executable specification: From the formal specification

and proofs of its properties, we can automatically
extract fully executable code in very little time. The
generated code is guaranteed to have the properties that
are proven on the specification and therefore allows
us to easily investigate new properties or the general
behavior of all operations. Since it is essentially a
complete implementation of the standard in software,
it is very easy to use as a test-case generator or general
test reference for other implementations of the standard.
The only minor downside is that it is sometimes inef-
ficient, relative to targeted and optimized implemen-
tations. In our case, ImandraX automatically generates
OCaml code that is standard-compliant by construction,
and immediately usable by other OCaml programs.

• Formal reference: A formal specification also serves as
a reference for other formalizations. For instance, we
can design a more performant version of an operation
and then prove that it has the same semantics as the
original one. Take, for instance, P3109 negation, which
is specified as the decoding of a number into extended
reals, negation performed on the extended reals, and the
result being encoded into a P3109 value again. This
procedure is not efficient in practice; we really just
want to flip the sign bit (except for NaNs and zeroes,
see Listing 6 for an implementation specialized to 8-bit
formats). This is trivial to specify and, in this simple
case, also easy to prove correct.

5. Conclusion

We present a formalization of the upcoming IEEE P3109
standard for floating-point formats for machine learning,
developed during formation of the standard, providing us
with increased confidence that our specification is consistent
and implementable. It is publicly available for immediate re-
use by others interested in the properties of P3109 numbers
(see [14]) and it is supplied in a format that is easily re-used
in other analysis tools, many of which are based on similar
input languages. While the theorem prover we employ is an
industrial product, the formalization itself does not depend
on proprietary features and other provers may require only
minor changes to proof strategies to find similar proofs.

let negate (f : Format.t) (x : t) : Float8.t
=

if is_nan f x || is_zero f x then x
else
{
b7 = not x.b7; b6 = x.b6; b5 = x.b5;
b4 = x.b4; b3 = x.b3; b2 = x.b2;
b1 = x.b1; b0 = x.b0;

}

theorem crct_neg (f:Format.t) (x:Float8.t) =
Format.k f = 8 ==>
i2s (negate f x) = Specification.Float8.

negate f (i2s x)

Listing 6. Efficient implementation of negation

While not the primary purpose of our formalization,
it also allows us to extract a standard-compliant imple-
mentation of the formalization in software, which is easy
to use as a test case generator or test reference for other
implementations in hardware or software.

Future work includes a variety of proofs about the pre-
cision of irrational and transcendental functions in P3109.

References

[1] [Online]. Available: https://standards.ieee.org/ieee/3109/11165

[2] [Online]. Available: https://github.com/P3109/Public

[3] G. Barrett, “Formal methods applied to a floating-point number
system,” IEEE Trans. Softw. Eng., vol. 15, no. 5, May 1989.

[4] J. Harrison, “A machine-checked theory of floating point arithmetic,”
in Theorem Proving in Higher Order Logics. Springer, 1999.

[5] ——, “HOL Light: An overview,” in Proc. Conf. on Theorem Proving
in Higher Order Logics TPHOLs, ser. LNCS, vol. 5674. Springer,
2009.

[6] L. Yu, “A Formal Model of IEEE Floating Point
Arithmetic,” Archive of Formal Proofs, May 2024. [Online].
Available: https://www.isa-afp.org/browser_info/current/AFP/IEEE_
Floating_Point/document.pdf

[7] L. C. Paulson, “Natural deduction as higher-order resolution,” J. Logic
Programming, vol. 3, no. 3, 1986.

[8] S. Boldo and G. Melquiond, Computer Arithmetic and Formal Proofs.
Elsevier, 2017.

[9] C. Barrett, P. Fontaine, and C. Tinelli, “The SMT-LIB Standard:
Version 2.6,” Department of Computer Science, The University of
Iowa, Tech. Rep., 2017. [Online]. Available: www.SMT-LIB.org

[10] [Online]. Available: https://imandra.ai

[11] L. de Moura and N. Bjørner, “Z3: an efficient SMT solver,” in Proc.
Conf. Tools and Algorithms for the Construction and Analysis of
Systems, TACAS, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[12] H. Barbosa, C. W. Barrett, M. Brain, G. Kremer, H. Lachnitt,
M. Mann, A. Mohamed, M. Mohamed, A. Niemetz, A. Nötzli,
A. Ozdemir, M. Preiner, A. Reynolds, Y. Sheng, C. Tinelli, and
Y. Zohar, “cvc5: A versatile and industrial-strength SMT solver,” in
Proc. Conf. Tools and Algorithms for the Construction and Analysis
of Systems, TACAS, ser. LNCS, vol. 13243. Springer, 2022.

[13] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The
MathSAT5 SMT solver,” in Proc. Conf. Tools and Algorithms for the
Construction and Analysis of Systems, TACAS, ser. LNCS, vol. 7795.
Springer, 2013.

[14] [Online]. Available: https://github.com/imandra-ai/ieee-p3109

160

