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Introduction to OCP Microscaling Formats (MX)
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- Use block-wise microscaling
- Scale data format: E8M0
- Element data format:

- FP8: E4M3, E5M2
- FP6: E2M3, E3M2
- FP4: E2M1
- INT8

3.76x memory / transfer reduction vs. BF16

2.73x lower runtime overhead vs. BF16

E8M0

Shared exponent for 32 elements
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MX Quantization Workflow on Blackwell GPUs
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MX Quantization Workflow on A100/H100 GPUs
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Behavior of Different MX Formats During LLM Training

5An Empirical Study of Microscaling Formats for Low-Precision LLM Training

MX4 diverges at the early stage of training!

Baselines

OCP

MX formats

MX8 and MX6

align with

baselines.



Proposed Design Space for MX Quantization
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MX Quantization 

Design Choices

#1: Data Types

ExMy?

#2: Element 
Rounding Modes

RTNE or SR?

#3: Scale 
Rounding Modes

Floor, Ceil or Others?

#4: Symmetric vs. 
Asymmetric Scaling

Symmetric or Asymmetric?

#5: Scaling 
Granularity and 
Organization

Block size? 
Grouping dimension?



Design Choice #1: Data Types
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E2M1: 
• OCP [1] defined MXFP4 format

E3M0:
• Larger dynamic range 

• Reduced precision 
• Recommended for gradients [2]

INT4:
• Better precision 
• Limited dynamic range

[1] OCP Microscaling Formats (MX) V1.0 Specification https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf

[2] Neural gradients are near-lognormal: improved quantized and sparse training (ICLR’21)

https://www.opencompute.org/documents/ocp-microscaling-formats-mx-v1-0-spec-final-pdf


Design Choice #2: Element Rounding Modes
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Round to Nearest Even (RTNE)

100% round to 60% round to

60% 40%

Stochastic Rounding (SR)

40% round to

• Always rounds to the nearest deterministically.
• Default rounding mode in OCP MX specification.
• Reduces local rounding error.

• Rounds probabilistically based on distance.
• Introduces larger variance compared to RTNE.
• Helps preserve small-magnitude values, 

important for gradient quantization.



Design Choice #3: Scale Rounding Modes
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Floor: scale rounding mode used in OCP Spec

For E2M1, maxExp = 2, maxValue = 
6

Overflow!



Even: round       with RTNE before log

Design Choice #3: Scale Rounding Modes
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Ceil: avoid overflow issues 

Although it prevents overflow, 
it may cause small values to 
underflow and shift to 0 due 
to the larger scale.

Trade-off between “Floor” 
and “Ceil”



Design Choice #4: Symmetric vs. Asymmetric Scaling

11

0 max(|xf

|)

0

-

max(|xf|

)

min max

0 max(xf)

0

min(xf)

min max

Symmetri
c

Asymmetri
c

Default scaling mode in OCP 
Spec, simplify hardware design 

Helps when data distribution 
is not centered at zero



Design Choice #5: Scaling Granularity and Organization
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1*2 row-wise 
scaling

2*1 column-wise scaling 2*2 block-wise scaling

Granularity → how many elements share one scale

Organization → how elements are grouped across dimensions



Impact of Scale and Element Rounding Modes
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• RTNE for all tensors (weights, activations, 

and gradients)

• Ceil > Floor > Even > BF16 (higher is 

worse)
• Ceil suffers from underflow, leading to 

gradient vanishing

• Even works the best for better balance 

between underflow and overflow

• When SR is applied to gradients
• Floor > Ceil ≈ Even ≈ BF16

• SR helps alleviates gradient vanishing 

for Ceil

• Floor still faces overflow issues

• SR is less effective for weights and 
activations (check the paper)

Ceil

Even

Floor



Impact of E3M0
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• When using E3M0 for gradients
• Floor > Even > Ceil ≈ BF16

(higher is worse)
• E3M0 has a wider dynamic 

range, causing a higher 
overflow penalty than E2M1. 

• That’s why Floor performs 
poorly and Even doesn’t 
perform as well as BF16.

Ceil

Even
Floor



Impact of INT4
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• The error is measured using Root 
Mean Squared Error (RMSE) with 
quantized and original tensors. We 
validated its correlation with training 
loss. 

• E3M0 is excluded due to its larger 
error and only suits for gradients.

• Results (higher is worse)
• E2M1: Ceil (●) > Floor (-) > 

Even (▼)
• INT4: Floor (-) > Even (▼) > 

Ceil (●)
• Overall: E2M1 is better than 

INT4



Impact of Asymmetric Scaling
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• INT4 shows significant improvement 
with asymmetric scaling, while 
E2M1 shows only marginal 
improvements.

• INT4 gains more from asymmetric 
scaling due to its narrower range 
and higher sensitivity to data skew.

INT4

E2M1



Impact of Scaling Granularity
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• Asymm + INT4 benefits the most 
from block size reduction.

• Symm + E2M1 (default MX format)
benefits the least.

• INT4 has a limited dynamic range, 
making smaller block sizes and 
asymmetric scaling more 
effective in capturing local 
variations and reducing the impact 
of outliers.

Symm + INT4

Asymm + INT4

Asymm + E2M1

Symm + E2M1



Impact of Scaling Organization

18An Empirical Study of Microscaling Formats for Low-Precision LLM Training

• Here, we show the results of activation 
quantization
• 1x16 (●): row-wise scaling (default)
• 16x1 (▼): column-wise scaling
• 4x4 (-): block-wise scaling

• Column-wise scaling improves 
activation quantization.

• Block-wise scaling balances between 
precision and efficiency. 

• No significant improvements of column-
wise scaling in weight or gradient 
quantization. (check the paper)

Symm + INT4

Symm + E2M1

Asymm + INT4

Asymm + E2M1



MX Training From Scratch
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• Both configurations closely track the 
FP8 and BF16 baselines throughout 
training.

• Slight divergences between 3.5K and 5K 
steps, but the loss curves stabilize and 
converge, with only a 0.02 gap by the 
end of training.



MX Training From a pre-trained checkpoint
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• However, when resuming training from 
a pre-trained checkpoint, 4-bit 
configurations struggle to maintain 
accuracy.

• Mixed-precision solution: using 4-bit for 
gradients and 6-bit weights and 
activations provides a more stable and 
robust solution.



Takeaways

• Data Types and Rounding Modes: 
• E2M1 works well with both Ceil and Even but Even gives slightly better results. 

• E3M0 is effective for gradients with Ceil. INT4 also requires Ceil to perform well. 

• Stochastic Rounding (SR) is essential for gradients, while RTNE works better for weights and activations.

• Symmetric vs. Asymmetric Scaling: 
• Asymmetric scaling benefits INT4 quantization by handling skewed data better. 

• E2M1 exhibits minor improvements due to its wider dynamic range.

• Scaling Granularity and Organization: 
• Reducing block size improves quantization accuracy, with INT4 under asymmetric scaling showing the 

largest gains. 

• Column-wise scaling only benefits activation quantization, and block-wise scaling provide moderate 

improvements and better flexibility to transpose operations during training.

• Training Performance: 
• Enhanced 4-bit configurations match FP8 and BF16 baselines when training from scratch. 

• Mixed-precision of 4-bit and 6-bit quantization maintains accuracy for resumed training.
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Limitations and Future Work

• Current 4-bit quantization requires 6-bit precision for weights and activations 

to maintain stability in resumed training. → Improve 4-bit methods to 

eliminate the need for higher-precision fallback.

• Experiments are conducted on relatively short training runs. → Increase the 

number of tokens in the experiments to assess convergence and stability over 

time.

• Evaluation is limited to a single LLM architecture. → Generalize the approach 

by testing on more architectures.
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