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Introduction

▶ Memory wall dictates move to smaller machine number types (end of ‘doubles
everywhere’)

▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision
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▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers
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Tapered Precision Arithmetic

▶ Consider general floating-point format
sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits
▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent

values close to zero
▶ Solution: variable-length exponent encoding

▶ Small magnitude: shorter exponent, longer fraction, higher density
sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction
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Posit Arithmetic

▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111111111111111111111111111111111111111111111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019
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Takum Arithmetic

sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . . ) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . . )
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

1111111111111111111111111111111111111111111111111111111111111111010 (67 bit)
↓

11111111111 (11 bit)
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Experimental Setup

Four solvers
▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution
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4. Solve Ãx̃ = b̃
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LU (2/2)
32 and 64 bits
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QR (1/2)
8 and 16 bits

0% 25% 50% 75% 100%

-5
0

10

20

30

∞σ

∞ω

lo
g 1

0(
re

la
tiv

e
er

ro
r)

float8
takum8
posit8

0% 25% 50% 75% 100%

-5

0

10

20

30

∞σ

∞ω

float16
takum16
posit16
bfloat16

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 11



QR (2/2)
32 and 64 bits

0% 25% 50% 75% 100%

-10

-5

0

5
∞ω

lo
g 1

0(
re

la
tiv

e
er

ro
r)

float32
takum32
posit32

0% 25% 50% 75% 100%

-20

-10

0
float64
takum64
posit64

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 12



MPIR (1/2)
(L, W , H) = (8, 16, 32) and (L, W , H) = (16, 16, 32), relative tolerance 10−3 and 10−3
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MPIR (2/2)
(L, W , H) = (16, 32, 32) and (L, W , H) = (16, 32, 64), relative tolerance 10−6 and 10−9
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GMRES (1/2)
8 and 16 bits, restart value 20, relative tolerance √
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GMRES (2/2)
32 and 64 bits, restart value 20, relative tolerance √
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εfloat64
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Conclusion

Summary of Results
▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range
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