
Evaluation of Bfloat16, Posit, and Takum
Arithmetics in Sparse Linear Solvers

Laslo Hunhold1 James Quinlan2

1Parallel and Distributed Systems Group, University of Cologne, Germany

2Department of Computer Science, University of Southern Maine, Portland, ME, USA

5th May 2025

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 1

Introduction

▶ Memory wall dictates move to smaller machine number types (end of ‘doubles
everywhere’)

▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)

▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient

▶ Common criticisms of IEEE 754 for low-precision arithmetic
▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type

→ OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)

▶ Redundancies dominate at low precisions, overflows due to small dynamic
range → IEEE P3109 (one NaN/zero, saturation)

▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range

→ IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)

▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range

→ bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16

▶ Number distribution does not reflect real-world usage → tapered precision
arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage

→ tapered precision
arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?

▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Introduction
▶ Memory wall dictates move to smaller machine number types (end of ‘doubles

everywhere’)
▶ Overparametrization of DNNs makes low-precision arithmetic sufficient
▶ Common criticisms of IEEE 754 for low-precision arithmetic

▶ No standardized 8-bit type → OCP OFP8 (E4M3, E5M2)
▶ Redundancies dominate at low precisions, overflows due to small dynamic

range → IEEE P3109 (one NaN/zero, saturation)
▶ float16 has insufficient dynamic range → bfloat16
▶ Number distribution does not reflect real-world usage → tapered precision

arithmetic

−50 0 50
log10(|x |)

us
ag

e
of

x

−50 0 50
0

10
20
30

log10(|x |)

−
lo

g 2
(ε

) float8
float16
bfloat16
float32

▶ Strong focus on deep learning → Performance in general-purpose computing?
▶ This work: Evaluation within sparse linear solvers

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 2

Tapered Precision Arithmetic

▶ Consider general floating-point format
sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits
▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent

values close to zero
▶ Solution: variable-length exponent encoding

▶ Small magnitude: shorter exponent, longer fraction, higher density
sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 3

Tapered Precision Arithmetic
▶ Consider general floating-point format

sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits
▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent

values close to zero
▶ Solution: variable-length exponent encoding

▶ Small magnitude: shorter exponent, longer fraction, higher density
sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 3

Tapered Precision Arithmetic
▶ Consider general floating-point format

sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits
▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent

values close to zero
▶ Solution: variable-length exponent encoding

▶ Small magnitude: shorter exponent, longer fraction, higher density
sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 3

Tapered Precision Arithmetic
▶ Consider general floating-point format

sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits

▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent
values close to zero

▶ Solution: variable-length exponent encoding
▶ Small magnitude: shorter exponent, longer fraction, higher density

sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 3

Tapered Precision Arithmetic
▶ Consider general floating-point format

sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits
▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent

values close to zero

▶ Solution: variable-length exponent encoding
▶ Small magnitude: shorter exponent, longer fraction, higher density

sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 3

Tapered Precision Arithmetic
▶ Consider general floating-point format

sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits
▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent

values close to zero
▶ Solution: variable-length exponent encoding

▶ Small magnitude: shorter exponent, longer fraction, higher density
sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 3

Tapered Precision Arithmetic
▶ Consider general floating-point format

sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits
▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent

values close to zero
▶ Solution: variable-length exponent encoding

▶ Small magnitude: shorter exponent, longer fraction, higher density
sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 3

Tapered Precision Arithmetic
▶ Consider general floating-point format

sign exponent fraction

▶ Sign and fraction bits already contain maximum information

Angle of approach: exponent bits
▶ Want higher density of numbers (i.e. more fraction bits, precision) for exponent

values close to zero
▶ Solution: variable-length exponent encoding

▶ Small magnitude: shorter exponent, longer fraction, higher density
sign exponent fraction

▶ Large magnitude: longer exponent, shorter fraction, lower density
sign exponent fraction

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 3

Posit Arithmetic

▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)

▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)

▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding

R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)

▶ Inefficient for large exponents (e.g. 48-bit
111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents

(e.g. 48-bit
111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties

▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations

▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,
negation, ordering, sign)

▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers

(unsigned zero of all zero bits,
negation, ordering, sign)

▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits

,
negation, ordering, sign)

▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation

, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering

, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)

▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Posit Arithmetic
▶ State of the art tapered machine number format, in standardisation1

▶ Active research field (hundreds of publications since 2017)
▶ Numerous implementations, latest by Calligo with RISC-V SoC ‘TUNGA’ (2024)
▶ Exponent coding R R0 E

k 1 2

▶ R is run of k zeros or ones, followed by one or zero (R0) (prefix code)

▶ Coded exponent is e =
{

−4k + uint(E) R0 = 0
4(k − 1) + uint(E) R0 = 1

▶ Efficient for small exponents (e.g. 1010 ≡ 2, 0111 ≡ −1)
▶ Inefficient for large exponents (e.g. 48-bit

111011 ≡ 183)2

▶ Properties
▶ No redundant representations
▶ Symmetry with two’s complement integers (unsigned zero of all zero bits,

negation, ordering, sign)
▶ Defined for all n, conversion between lengths simple rounding or expansion

1John L. Gustafson et al. ‘Standard for Posit Arithmetic (2022)’. Mar. 2022
2Florent de Dinechin et al. ‘Posits: the good, the bad and the ugly’. Mar. 2019

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 4

Takum Arithmetic

sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p

▶ Goals
▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code

▶ Preserve useful posit properties
▶ Design Approach

▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1
(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value

▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach

▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1
(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value

▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value

▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated

▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an
incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)

▶ Maximum exponent value 255 (with bit length 8) follows naturally
▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)

▶ Maximum exponent value 255 (with bit length 8) follows naturally
▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.

▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254
value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’

▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign

▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)

↓
11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Takum Arithmetic
sign exponent fraction

S D R C F

1 1 3 r p
▶ Goals

▶ More efficient exponent code
▶ Preserve useful posit properties

▶ Design Approach
▶ Candidate sequence of ‘saturated’ integers 2k − 1 with k ∈ N1

(1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, . . .) for largest exponent value
▶ Tapered format: Maximum exponent length must also be saturated
▶ Take the subsequence 22k −1 − 1 of integers whose bit length is an

incremented saturated integer (3, 15, 255, 65535, 4294967295, . . .)
▶ Maximum exponent value 255 (with bit length 8) follows naturally

▶ 3-bit regime (0-7) encodes exponent bit count, followed by 0 to 7 exponent bits.
▶ Exponent value has implicit leading 1-bit (1-8 bits), subtract 1 for range 0-254

value 0 1 2 3 4 . . . 254

value bits 1 10 11 100 101 . . . 11111111
encoding 000 0010 0011 01000 01001 . . . 1111111111

▶ Icelandic ‘takmarkað umfang’, meaning ‘limited range’
▶ Separate ‘direction’ bit D for exponent sign
▶ Interlude: Comparison for value 254 (posit → takum):

11010 (67 bit)
↓

11111111111 (11 bit)

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 5

Precision

−250 −200 −150 −100 −50 0 50 100 150 200 250

n − 20

n − 15

n − 10

n − 5

exponent e

pr
ec

isi
on

/b
its

bfloat16/float32
float64
posit
takum

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 6

Dynamic Range

2 4 8 16 24 32 6410−100

10−77

10−55
10−45

10−20

100

1020

1038

1055

1077

10100

bit string length n

dy
na

m
ic

ra
ng

e

IEEE 754 normal
IEEE 754 subnormal

bfloat16
posit

takum

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 7

Experimental Setup

Four solvers
▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)

▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)

▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning

▶ Generalized Minimal Residual (GMRES) method
Dataset

▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset

▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection

▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries

▶ Custom metadata postprocessing and packing
Procedure for each matrix A and type T

1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T

1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)

2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver

3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)

4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃

5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

Experimental Setup
Four solvers

▶ LU decomposition (simulate UMFPACK → pregenerated permutations)
▶ QR factorization (simulate SPQR → pregenerated permutations)
▶ Mixed Precision Iterative Refinement (MPIR) with ILU(0) preconditioning
▶ Generalized Minimal Residual (GMRES) method

Dataset
▶ SuiteSparse Matrix Collection
▶ Subset of 295 square, full rank matrices with less than 104 non-zero entries
▶ Custom metadata postprocessing and packing

Procedure for each matrix A and type T
1. Generate random b such that ∥b∥∞ = 1 (seeded Xoshiro PRNG)
2. Solve system Ax = b in float128 using custom sparse QR solver
3. Convert (A, b) to T , yielding (Ã, b̃)
4. Solve Ãx̃ = b̃
5. Determine ∥x − x̃∥2 in float128

Sort all errors to obtain cumulative error distribution

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 8

LU (1/2)
8 and 16 bits

0% 25% 50% 75% 100%
-10

0

10

30

50

70

∞σ

∞ω

lo
g 1

0(
re

la
tiv

e
er

ro
r)

float8
takum8
posit8

0% 25% 50% 75% 100%

-5

0

5

10

∞σ

∞ω

float16
takum16
posit16
bfloat16

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 9

LU (2/2)
32 and 64 bits

0% 25% 50% 75% 100%

-10

-5

0

5
∞ω

lo
g 1

0(
re

la
tiv

e
er

ro
r)

float32
takum32
posit32

0% 25% 50% 75% 100%
-20

-15

-10

-5
float64
takum64
posit64

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 10

QR (1/2)
8 and 16 bits

0% 25% 50% 75% 100%

-5
0

10

20

30

∞σ

∞ω

lo
g 1

0(
re

la
tiv

e
er

ro
r)

float8
takum8
posit8

0% 25% 50% 75% 100%

-5

0

10

20

30

∞σ

∞ω

float16
takum16
posit16
bfloat16

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 11

QR (2/2)
32 and 64 bits

0% 25% 50% 75% 100%

-10

-5

0

5
∞ω

lo
g 1

0(
re

la
tiv

e
er

ro
r)

float32
takum32
posit32

0% 25% 50% 75% 100%

-20

-10

0
float64
takum64
posit64

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 12

MPIR (1/2)
(L, W , H) = (8, 16, 32) and (L, W , H) = (16, 16, 32), relative tolerance 10−3 and 10−3

0% 25% 50% 75% 100%

0

1

2

−∞

∞ω

∞σ

lo
g 1

0(
ite

ra
tio

n
co

un
t)

float
takum
posit

0% 25% 50% 75% 100%

0

1

2

−∞

∞ω

∞σ float
takum
posit

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 13

MPIR (2/2)
(L, W , H) = (16, 32, 32) and (L, W , H) = (16, 32, 64), relative tolerance 10−6 and 10−9

0% 25% 50% 75% 100%

0

1

2

∞ω

∞σ

lo
g 1

0(
ite

ra
tio

n
co

un
t)

float
takum
posit

0% 25% 50% 75% 100%

0

1

2

∞ω

∞σ float
takum
posit

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 14

GMRES (1/2)
8 and 16 bits, restart value 20, relative tolerance √

εfloat8 and √
εfloat16

0% 25% 50% 75% 100%

0

2

4

−∞

∞ω

lo
g 1

0(
ite

ra
tio

n
co

un
t)

float8
takum8
posit8

0% 25% 50% 75% 100%

0

2

4

−∞

∞ω float16
takum16
posit16
bfloat16

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 15

GMRES (2/2)
32 and 64 bits, restart value 20, relative tolerance √

εfloat32 and √
εfloat64

0% 25% 50% 75% 100%

0

2

4

−∞

∞ω

lo
g 1

0(
ite

ra
tio

n
co

un
t)

float32
takum32
posit32

0% 25% 50% 75% 100%

0

2

4

−∞

∞ω float64
takum64
posit64

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 16

Conclusion

Summary of Results
▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse

▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats

▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)

▶ Takums significantly outperform posits in some benchmarks, especially GMRES
(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion

▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

Conclusion
Summary of Results

▶ bfloat16 overall better than float16, but sometimes worse
▶ Posits and takums overall superior than IEEE 754 floats
▶ takum16 always better than bfloat16 (unlike posit16)
▶ Takums significantly outperform posits in some benchmarks, especially GMRES

(against intuition)

Discussion
▶ bfloat16 is a better general-purpose format than float16

▶ Posits have some shortcomings (precision loss further from 1, limited dynamic
range), but overall better than IEEE 754 floats

▶ Takums suggest new mixed-precision workflow: Reducing n only affects
precision, not dynamic range

Laslo Hunhold, James Quinlan Evaluation of Bfloat16, Posit, and Takum Arithmetics in Sparse Linear Solvers 17

