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OVERFLOW
DIVIDE-BY-ZERO

INVALID
INEXACT
UNDERFLOW
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Numerical
code should

be correct

View exceptions as bugs: View exceptions as inevitabilities:
Make your code exception-free! Ensure correct exception handling!
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function mmMaxNorm (dim, A, B)

result = 0.0
dim
= 1, dim
acc = 0.0

do k = 1, dim

acc = acc + A(i,k) * B(k,J)

end do
result = max(result, abs (acc))
end do

end do

end function mmMaxNorm
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result = 0.0

do 1 = 1, dim

do j = 1, dim

acc = 0.0
do k = 1, dim
acc = acc + A(i,k) * B(k,3J)
end do
result = max(result, abs (acc))

end do

end function mmMaxNorm
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function mmMaxNorm (dim,

result = 0.0
do 1 = 1, dim
do j = 1, dim
acc = 0.0

do k = 1, dim

acc = acc + A(i,k) * B(k,J)

end do

result = max(result, abs (acc))
end do
do

end function mmMaxNorm

gfortran

oy
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function mmMaxNorm (dim,

result = 0.0
do i = 1, dim
do j = 1, dim
0.0
do k = 1, dim

dCE

acc = acc + A(i,k) * B(k,J)

end do

result = max(result, abs (acc))
end do
do

end function mmMaxNorm

gfortran
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Tx000016eb
0x000016ec
0x00001805
0x000018£3

mov eax, dword [rax]

cage

mov quord [var_20n], rax

mov rax, quord [var 20n]
0

movaxd rdx, edx

mov quord [var_26k], rdx

mov rdx, rax

imul rdx, quord (var_28h]
o

a
mov quord [var_30n1, rax
mov rdx, quord (var_30h]

ov rox, qeord [din]
mov ecx, dword [rex]
movaxd rex, ecx.
mov quord [var_38h, rex
mov rex, rdx

1

omp dword [11, ecx

gfortran-generated binary

moves xmn0, dword [result]

rooroia | mov we, s (e
oy mov et Mrord ol fox00001a%6  pop zbp
0001563 mov dword 131 e o
w1 e
seta a1
movax et ail
Cert ez, et
Jne oxiase
CromoToad | pror w0,
0AO00DI0e1  movas dword lacel, xem0 R
CRO000I0e6  mov 2, quord [din ox000 33 avora (4, 1
CR0000ISes  mov 8, dord [zdi oxo00 Sep Oxiden
Oro0noioed mov awera (e 1
o dword 11, w50
i ail
movax st ail
e, e
Soc 0wt
i, dvord 01
novexd £, ed
felo s zas
Gwora 141
_
s (eas + zovq) | [Oe0000185e  nop
T CROD001a36  maves s, dvord (rasult]
voxd ral, eai 0x00001264 moves xmm0, dword (ace]
A e 0x00001a69 am2, dword [0x00002180]
ono0001a7 -
i e oxo0001474 i
Ebh i 0200001478 Tresule], xm0
Y ox0000147a 1
o 0x00001a81
word
0. aword. (xai + 9%
mlas om0, sl
moves mmd, dword face]
addes w0, xurl
movas uord lacel <m0
W 4/33
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Ox000016e5. push rop

mov quord [var_20n], rax
mov rax, quord (var_20n]

The eighth execution of this add instruction

triggers an “Invalid” exception, generating a
NaN that is ultimately lost.

a
mov quord [var_30n1, rax

UxUU0U mov

0x00001

movs

0x00001a0la imul rdi, rax .

0x00001a0e

=
Q
W
jor
N

0x0000]

mov

mov_dword [i]

0x00001alt® movs

omp dword [11, ecx

gfortran-generated binary

0x00001a18

0x000019b7 Jne 0x1a90

0x00001lalb mov

0x0000190 nop
0200001291 moves xmn0, dword [result]
0x0000195 pop xho

0x00001297 rat

0 ‘/‘ "“ ‘/‘ )T a7 oOZ7 0x000019bd mov rsi, gword [(dim]
0x00001alf movs repprel N e e ey

y 0x000019¢3 mov dword [31, 1

0x00001a25 mov

0x000015ca
0x000019¢a

0x00001a28 movsxd

la2b imul rdi, rdx .

op
ad dword (1],
jmp 0x19aa

mov

. 0x000019ea mov r8d, dword [rdi]
0x00001924 mov dword [k], 1

0x00001a36 movs

. 0x000019£4 omp dword [k], r8a
a . 0x000019£8 setg dil
QO rdi . 0x000019£¢ movax edi, dil
0x00001200 cest eai, edi
0x00001202 3ne Oxlase

0x00001a3c rdi,

0x00001a40 xmmQO, C

0x00001a4d6

xmmO, xmml
0x00001ada

0x00001a4f

0x00001a53

000001250 nop.

0x00001a5¢ roves xmmi, dword [result]

0x00001264 movss wmm0, dword (ace)

0x00001269 movss xrm2, dword [0x00002180]
ey

xmml, dword [acc]
xmm0, xmml
dword [acc], xmmO

[k], 1

s
0x00001a78 movss dword [result], xmm0
0x00001274 add dword (3], 1
0x00001281 3mp Ox10ca

1a58

0x0000

0x00001a
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function mmMaxNorm (dim,

result = 0.0
do i = 1, dim
do j = 1, dim
0.0
do k = 1, dim

dCE

acc = acc + A(i,k) * B(k,J)

end do

result = max(result, abs (acc))
end do
do

end function mmMaxNorm

gfortran

0.0 0.0
- [—3.40282 x 10% —2.4245]
~ [0.0 3.06254 x 10%
B [0.0 —3.08694 x 1038}

oy
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function mmMaxNorm (dim, /

result = 0.0 i b. 1
do i = 1, dim gfortran n

do j =1, dim im“““““““““““““““m

acc = 0.0

do k = 1, dim binz
acc = acc + A(i,k) * B(k,3J)

end do

result = max(result, abs (acc))

end do
do

end function mmMaxNorm
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[ 0.0 0.0 ]
A =
—3.40282 x 10%® —2.4245

B [0.0 3.06254 x 10 w
(0.0 —3.08694 x 10°

oy

function mmMaxNorm (dim, /

result = 0.0 fi bin1
do i = 1, dim gfortran : n

do j =1, dim é im““““““““““““““mj

acc = 0.0 8 L ccasacasacasacanasanacasasasasass: _

do k = 1, dim bin2
acc = acc + A(i,k) * B(k,J)

end do

result = max(result, abs (acc))

end do
do

end function mmMaxNorm
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function mmMaxNorm (dim, /

result = 0.0

do 1 =

do

1, dim
J =1, dim
acc = 0.0
do k = 1, dim

acc = acc + A(i,k) * B(k,7J)

end do

result = max(result, abs (acc))

end do

end do

end function mmMaxNorm

0.0

A=
[—3.40282 x 1038
3.06254 x 1038 }
—3.08694 x 108

oy

B [0.0
0.0

0.0
—2.4245

gfortran

gfortran
-fdefault-real-8

(increase FP precision to 64-bit)
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0.0 0.0
[—3.40282 x 1038 —2.4245]
_ [0.0 3.06254 x 10
B [0.0 —3.08694 x 1038}

oy

function mmMaxNorm (dim, /

result = 0.0

do i = 1, dim gfortran

do j = 1, dim ;i im““““““““““““““mj
acc = 0.0 . ISR _

do k = 1, dim

acc = acc + A(i,k) * B(k,7J)

end do
result = max(result, abs (acc)) P

end do

Ao gfortran
e -fdefault-real-8

end function mmMaxNorm (increase FP precision to 64-bit)
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View exceptions as bugs: View exceptions as inevitabilities:
Make your code exception-free! Ensure correct exception handling!
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(increase FP precision to 64-bit)



When an Overflow, Divide-by-Zero, or Invalid exception occurs,
a sound exception-handling policy notifies users by either...

1. The presence of EVs in the output
2. Some library-specific mechanism triggered by checking for
their presence at some point during the execution.
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When an Overflow, Divide-by-Zero, or Invalid exception occurs,
a sound exception-handling policy notifies users by either...

1. The presence of EVs in the output
2. Some library-specific mechanism triggered by checking for
their presence at some point during the execution.

This is the policy adopted by the reference LAPACK/BLAS implementations [1].
-> How can we test this?

[1] J. Demmel, et al. “Proposed Consistent Exception Handling for the BLAS and LAPACK”. 7/33



EXCVATE

Exceptional Value Tester
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Regression Test
Executables

Function
Prototypes

EXCVATE is composed of three components
that address three key challenges...
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Challenge 1: Existing input generation techniques
are not well-suited to testing exception handling
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Challenge 1: Existing input generation techniques
are not well-suited to testing exception handling

Pre-existing works use a variety of input generation techniques to yield
floating-point inputs that trigger exceptions.

o e.g., fuzzing [1], symbolic execution [2,3], Bayesian optimization [4]

[1] A. Tran, I. Laguna, G. Gopalakrishnan. “FPBoxer: Efficient Input-Generation for Targeting Floating-Point Exceptions in GPU Programs”.

[2] E.T. Barr, T. Vo, V. Le, Z. Su. “Automatic Detection of Floating-Point Exceptions”.

[3] X. Wu, L. Li, J. Zhang. “Symbolic Execution with Value-Range Analysis for Floating-Point Exception Detection”. 9/33
[4] 1. Laguna, G. Gopalakrishnan. “Finding Inputs that Trigger Floating-Point Exceptions in GPUs via Bayesian Optimization”.
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Pre-existing works use a variety of input generation techniques to yield
floating-point inputs that trigger exceptions.

o e.g., fuzzing [1], symbolic execution [2,3], Bayesian optimization [4]

They are designed with the “all exceptions are bugs” mindset; they only seek
to trigger exceptions...

[1] A. Tran, I. Laguna, G. Gopalakrishnan. “FPBoxer: Efficient Input-Generation for Targeting Floating-Point Exceptions in GPU Programs”.
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Challenge 1: Existing input generation techniques
are not well-suited to testing exception handling

Pre-existing works use a variety of input generation techniques to yield
floating-point inputs that trigger exceptions.

o e.g., fuzzing [1], symbolic execution [2,3], Bayesian optimization [4]

They are designed with the “all exceptions are bugs” mindset; they only seek
to trigger exceptions... but most code should handle exceptions correctly!

o |EEE754 mandates propagation of exceptional-values in most cases
o Developers often do a good job!

[1] A. Tran, I. Laguna, G. Gopalakrishnan. “FPBoxer: Efficient Input-Generation for Targeting Floating-Point Exceptions in GPU Programs”.

[2] E.T. Barr, T. Vo, V. Le, Z. Su. “Automatic Detection of Floating-Point Exceptions”.

[3] X. Wu, L. Li, J. Zhang. “Symbolic Execution with Value-Range Analysis for Floating-Point Exception Detection”. 9/33
[4] 1. Laguna, G. Gopalakrishnan. “Finding Inputs that Trigger Floating-Point Exceptions in GPUs via Bayesian Optimization”.



Approach: spoof exceptions via binary rewriting to cheaply find handling failures
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Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected

. Warnings
Executions 9

Exception
Spoofer

For each function execution:

For each instruction execution that could
trigger an “Invalid” exception:

Replay the function execution

Spoof an exception by overwriting the

instruction’s output with a NaN




Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected

. Warnings
Executions 9

Exception
Spoofer

For each function execution:

For each instruction execution that could
trigger an “Invalid” exception:

Replay the function execution

Spoof an exception by overwriting the

instruction’s output with a NaN

Raise a warning if handled incorrectly
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ifx-generated binary
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Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3]
that could encounter “Invalid” exceptions. 2 4]
4 2] ¢
B =
3 1]

ifx-generated binary

sub rsi, 1

imul rdx, rsi

add rax, rdx

sub rcx, 1

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

s dword [rbp-0x98], xmmO
eax, dword [rbp-0x8c]




Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary
that could encounter “Invalid” exceptions.

These two are in a block that is executed eight : B= :
times -> 2 x 8 =16 possible exception sites. R R EEEERIRPY '

ifx-generated binary

sub rsi, 1

imul rdx, rsi

add rax, rdx
sub rcx, 1
mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

movss dword [rbp-0x98], xmmO

eax, dword [rbp-0x8c]

dd eax, 1
dw
mov eax, dword [rbp

ord [rbp-0x8c], eax

cmp eax, dword [rbp-0xa4
jle 0x405a0a

==11/33




Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] >

that could encounter “Invalid” exceptions. 2 4] =

4 2] T

These two are in a block that is executed eight . B= 3 1 =

times -> 2 x 8 =16 possible exception sites. R Y : Q

b ()

)

So, replay the function execution 16 R X
times, spoofing a different Invalid il s, sk
exception each time. sub rex, 1

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml
ovss dword [rbp-0x98], xmmO

, dword [rbp-0x8c]

ecax
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There are only two instructions in the ifx binary 1 3] >

that could encounter “Invalid” exceptions. 2 4] =

491 T Te

These two are in a block that is executed eight = 3 1 =

times -> 2x8 =16 possible exception sites. rrrreeeeeieeeennn : Q

b ()

)

So, replay the function execution 16 R é
times, spoofing a different Invalid il s, sk
exception each time. sub rox, 1

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml
vss dword [rbp-0x98], xmmO

Table of Test Results /
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x, 1
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add ) [rbp-(
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spoofs an exception




Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] >

that could encounter “Invalid” exceptions. 2 4] 2

49 — O

: : o

These two are in a block that is executed eight . B= 3 1] =

times -> 2x8 =16 possible exception sites. rrrreeeeeieeeennn ' Q

()

)

So, replay the function execution 16 o t(zVerWriteo & &
times, spoofing a different Invalid imul rdx, rsi ® st fimetgeut With Nap,

o o add rax, rdx

eXCeptIOn eaCh tlme sub rcx, 1 Sexecuted

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

Tab|e Of TeSt ReSU|tS movss dword ,prfOx%?J ' xmmO
mov eax, dword [rbp-0x8c]
1
mul ord [rbp-0x8c]
dword [rbp-!
add d [rbp-(

1 2 3 4 5 6 - 8
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spoofs an exception




Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] >

that could encounter “Invalid” exceptions. 2 4] c

4 9] — e

. ©

These two are in a block that is executed eight % 3 1] =

times -> 2x8 =16 possible exception sites. ~ rrreeeieieens : 0

(]

5 (@)}

So, replay the function execution 16 . tl?)v/e rite ) X
times, spoofing a different Invalid imul rdx, rsi e%t/meulfuf with Nan

o o add rax, rdx

exception each time. sub rox; 1 Xecyteq

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml
vss dword [rbp-0x98], xmmO
eax, dword [rbp-0x8c]

Table of Test Results

mul

add

1 2 3 4 5 ) 7 8

[teration in which EXCVATE
spoofs an exception
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There are only two instructions in the ifx binary At 3] >
that could encounter “Invalid” exceptions. |2 4] g
(4 2] - ﬁ
These two are in a block that is executed eight 15 3 1 =
times -> 2 x 8 =16 possible exception sites. SETTREEE EREREEEEE: g
. (@)
So, replay the function execution 16 . ; therWriteo " &
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exception each time. o E
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There are only two instructions in the ifx binary At 3] >
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Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] : >

that could encounter “Invalid” exceptions. 2 4] 2

4 9] — e

. ©

These two are in a block that is executed eight 5= 3 1] =

times -> 2x8 =16 possible exception sites. ~  rrrrrereeeend : Q

(]

5 (@)}

So, replay the function execution 16 o tg\/erwr,-,eo . X
times, spoofing a different Invalid imul rdx, rsi °6th time%ut With Nap

o o add rax, rdx

exception each time. i rox. 1 > SXecypey

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

Tab|e Of TeSt ReSU|tS movss dword [rbp-0x98], xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 8 8 mov dword [rbp-0x8c], eax

mov eax, dword [rbp-0x8c]

add <ltmp fax, dﬂford [rbp-0xa4d]
| jle 0x405a0a
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There are only two instructions in the ifx binary 1 3] : >

that could encounter “Invalid” exceptions. 2 4] 2

4 9] — e
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These two are in a block that is executed eight 5= 3 1] =

times -> 2x8 =16 possible exception sites. ~  rrrrrereeeend : Q

(]

2 (@)

So, replay the function execution 16 o OVerwr,,e ‘. Fa
times, spoofing a different Invali : Dtime ;" With gy,
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exception each time. i rox. 1 > SXecypey
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Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary
that could encounter “Invalid” exceptions.

These two are in a block that is executed eight
times -> 2 x8 =16 possible exception sites.

So, replay the function execution 16
times, spoofing a different Invalid
exception each time.

Table of Test Results
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20 20 20 20 8

8

add

movss dword

mov dword
add eax, 1
mov dword

eax,

eax,

mov dword

cmp eax, dword

| jle 0x405a0a

1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml
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Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary
that could encounter “Invalid” exceptions.

These two are in a block that is executed eight :
times -> 2x8 =16 possible exception sites. rrrreeeeeieeeennn '

ifx-generated binary

So, replay the function execution 16 o
times, spoofing a different Invalid imul rdx, rsi

. . add rax, rdx
eXCeptlon eaCh tlme sub rcx, 1

mulss xmml, dword [rax + rcx*4]
addss xmmO, xmml

Tab|e Of TeSt ReSU|tS movss dword [rbp-0x98], xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 8 8 mov dword [rbp-0x8c], eax
mov eax, dword [rbp-0x8c]
add cmp eax, dword [rbp-0xa4d]

jle 0x405a0a
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[teration in which EXCVATE
spoofs an exception
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Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary
that could encounter “Invalid” exceptions.

These two are in a block that is executed eight :
times -> 2x8 =16 possible exception sites. rrrreeeeeieeeennn '

ifx-generated binary

So, replay the function execution 16 o
times, spoofing a different Invalid imul rdx, rsi

. . add rax, rdx

exceptlon each time. sub rcx, 1

mulss xmml, dword [rax + rcx*4]
addss xmmO, xmml

Tab|e Of TeSt ReSU|tS movss dword [rbp-0x98], xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 8 8 mov dword [rbp-0x8c], eax
mov eax, dword [rbp-0x8c]
cmp eax, dword [rbp-0xa4d]

=4 20 20 20 20 8 |8 .
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Challenge 2: How do we “reify” a spoofed exception
that results in an exception-handling failure?
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Challenge 2: How do we “reify” a spoofed exception
that results in an exception-handling failure?

Warnings can originate from spoofed Invalid exceptions that are not possible.

o e.g.,if ( isfinite(x) && isfinite(y) ) z = x*y; ->Invalid exception is impossible
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Challenge 2: How do we “reify” a spoofed exception
that results in an exception-handling failure?

Warnings can originate from spoofed Invalid exceptions that are not possible.
o eg.,if ( isfinite(x) && isfinite(y) ) z = x*y; ->Invalid exception is impossible
For a true buggy case, EXCVATE must create an input that:

1. triggers the spoofed Invalid exception
2. preserves the control flow that resulted in failed exception handling
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Selected Warnings Concrete  Event
Executions

+
' Inputs  Traces
Exception Input 300'
% Spoofer Generator Sts
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Approach: encode the desired behavior (control flow + exception) into an SMT query
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Eig(l:e‘f;eg Warnings Concrete  Event
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For each warning:
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Eig(l:e‘f;eg Warnings Concrete  Event
utions Inputs  Traces

Exception Input .9,,0'
Spoofer Generator Sts
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For each warning:

Initialize symbolic “shadow variables” for each FP input




Approach: encode the desired behavior (control flow + exception) into an SMT query

Eig(l:e‘f;eg Warnings Concrete  Event
utions Inputs  Traces

Exception Input .9,,0'
Spoofer Generator Sts
~

For each warning:
Initialize symbolic “shadow variables” for each FP input

Replay execution with spoof




Approach: encode the desired behavior (control flow + exception) into an SMT query

Selected
Executions

Warnings Concrete ;| Event
Inputs ~ Traces

Exception Input .9,,0'
Spoofer Generator Sts

For each warning:
Initialize symbolic “shadow variables” for each FP input
Replay execution with spoof

For each instruction execution whose operands have
associated symbolic shadow variables:
Add a constraint to the SMT query




Approach: encode the desired behavior (control flow + exception) into an SMT query

Selected
Executions

Warnings Concrete ;| Event
Inputs ~ Traces

Exception Input .9,,0'
Spoofer Generator Sts

For each warning:
Initialize symbolic “shadow variables” for each FP input
Replay execution with spoof

For each instruction execution whose operands have
associated symbolic shadow variables:
Add a constraint to the SMT query

Give query to an SMT solver




Approach: encode the desired behavior (control flow + exception) into an SMT query

Selected
Executions

Warnings Concrete ;| Event
Inputs ~ Traces

Exception Input .9,,0'
Spoofer Generator Sts

For each warning:
Initialize symbolic “shadow variables” for each FP input
Replay execution with spoof

For each instruction execution whose operands have
associated symbolic shadow variables:
Add a constraint to the SMT query

Give query to an SMT solver

If satisfiable:
Run program with generated input




Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from

spoofing an Invalid exception in the first execution
of the multiply instruction.

ifx-generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from At 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. = |* 2 k5
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1
spoofing an Invalid exception in the first execution : 2
of the multiply instruction. g |4

: 3

result = 0.

vifx—generated binary

movss xmmO, dword ptr [rbp-0x98]

movss xmml, dword ptr [rcx+rdx*4]
max (result, abs(acc))

mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO
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=
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Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

result = 0.
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max (result, abs(acc))

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

movss

movss

mulss
addss
movss

-> |oad acc
xmm0, dword ptr [rbp-0x98]

xmml, dword ptr [rcx+rdx*4]

xmml, dword ptr [rax+rcx*4]
xmmO, xmml
dword ptr [rbp-0x98], xmmO

vifx—generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

result = 0.
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max (result, abs(acc))
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0x7£9deal0970cO

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

movss

movss

mulss
addss
movss

-> |oad acc
xmm0, dword ptr [rbp-0x98]

-> load A(i,k)
xmml, dword ptr [rcx+rdx*4]

xmml, dword ptr [rax+rcx*4]
xmmO, xmml
dword ptr [rbp-0x98], xmmO

vifx—generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.
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Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

movss

movss

mulss
addss
movss

-> |oad acc
xmm0, dword ptr [rbp-0x98]

-> load A(i,k)
xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
xmml, dword ptr [rax+rcx*4]
xmmO, xmml
dword ptr [rbp-0x98], xmmO

vifx—generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

result = 0.
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max (result, abs(acc))

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

movss

movss

mulss
addss
movss

-> |oad acc
xmm0, dword ptr [rbp-0x98]

-> load A(i,k)
xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
xmml, dword ptr [rax+rcx*4]
xmmO, xmml
dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

vifx—generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution :2 4: > 5
of the multiply instruction. = |* 2 @
: 3 1] ©

.................. ()

c

o

-> |oad acc ...>I_<

movss xmmO, dword ptr [rbp-0x98]

-> load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

-> |oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7f9dea0970a4
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

of the multiply instruction.
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0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

1 3] -
A= :
2 4]
i
B— :
3 1]
-> |oad acc
movss xmmO, dword ptr [rbp-0x98]
© > load A(ik)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

vifx—generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]
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movss xmml, dword ptr [rcx+rdx*4]
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

> load A(i,k) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc
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0x7f£9deal0970ac
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

> load A(i,k) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7£9deal0970a4
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] 'ﬁ;

assert ( = xmml_0 0x7£9dea0970a4_0 )

-> load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7£9deal0970a4
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] 'ﬁ;

assert ( = xmml_0 0x7£9dea0970a4_0 )

-> load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

il P multiply with B(k,j)
mulss

xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

xmml
-> accumulate and save acc
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

xmml
-> accumulate and save acc

0x7f9dea0970a4
0x7£9dea0970a8
0x7£9deal0970ac

0x7£9dea0970b0 Read Operands
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

Read Operands

xmml
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from — : , _[1 3] : -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. = |* 2 I5
. 13 1 "c_é
assert (= e 8
xmml_1 ()
( fp.mul rm . Qb
xmml_0 *  ->load acc >
0x7£9dea0970b4_0 movss xmm0, dword ptr [rbp-0x98] "':
) . e

) * ->load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

i) -> accumulate and save acc
o
E
SMT 2 Read Operands
query 1) 0x7£9dea0970b4
=
e
O
<

xmml
0x7£9dea0970b4
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from  : , _[1 3] : >
spoofing an Invalid exception in the first : :2 4: : > 5
execution of the multiply instruction. . B— d2 2
: 3 1] 5
assert (= e 8
xmml_1 (]
( fp.mul rm . Qh
xmml_0 *  ->load acc >
0x7£9dea0970b4_0 movss xmm0, dword ptr [rbp-0x98] =
) g .

) * ->load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

assert ( fp.isNaN xmml 1 ) ~__->multiply with B(k})
- mulss xmml, dword ptr [rax+rcx*4]

addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

SMT
query

Read Operands

xmml
0x7£9dea0970b4

0x7£9dea0970b4

Active Symbols




Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

of the multiply instruction.

SMT
query

s
o
Q
£
>
wn
Q
=
—
(&}
<

xmm1
0x7f9dea0970a4
0x7£f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7f£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9dea0970cO

A 1 3] -

2 4]

[4 2] -

B = :

3 1]
->|oad acc
movss xmmO, dword ptr [rbp-0x98]

: -> load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

Read Operands

xmml
xmmO

vifx—generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from — : , _[1 3] : -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction.  p—|* 2| @
: 3 1 ©
assert (= e 8
xmm0_0 ()
( fp.add rm g o
#000000000000000000000000000000000 : -> |oad acc X
xmml_1 movss xmmO, dword ptr [rbp-0x98] 'ﬁ;
) . e

) * ->load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
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k%) -> accumulate and save acc
o
0

SMT £
77 Read Operands
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e ] g
e
O
<
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#000000000000000000000000000000000 : -> |oad acc X
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from At 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)

mulss xmml, dword ptr [rax+rcx*4]

— il;ddss xmmO, xmml
— ovss dword ptr [rbp-0x98], xmmO

-> accumulate and save acc
%’ 0x7f9dea0970a4
Ra) 0x7£9dea0970a8
e 0x7£f9deal0970ac
>
SMT 7 015922097000 Read Operands
uer G) X ea
query g
e
(@]
<

0x7£9deal0970b8
0x7£9dea0970bc
0x7£9dea0970c0
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Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

assert ( = 0x7ffef9945e28 1 xmm0 0 )

SMT
query

Active Symbols

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution

1 3] -
2 4]
4 2| -

B = :
3 1]

->|oad acc
movss xmmO, dword ptr [rbp-0x98]
© > load A(ik)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

Read Operands

vifx—generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

assert ( = 9x7ffef9945e28_5 xmm0_0 )

0x7ffef9945e28

xmmO

SMT
query

Active Symbols

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution

1 3] -
2 4]
4 2| -

B = :
3 1]

->|oad acc
movss xmmO, dword ptr [rbp-0x98]
© > load A(ik)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

Read Operands

.'ifx—generated binary
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from

spoofing an Invalid exception in the first execution
of the multiply instruction.

ifx-generated binary

SMT
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from -
spoofing an Invalid exception in the first execution-- RO ST B =
of the multiply instruction. : A= [ 0 0] I5
> ; ©

: B [T117x 107 0] : %

: 0 0 o

.............................. ,_é

SMT
query




Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from

of the multiply instruction. : A=

|

ifx-generated binary

SMT
query




Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from -
spoofing an Invalid exception in the first execution-- NeN o : =
of the multiply instruction. : A= [ 0 0] : 3
: —p O

’; B [~117x 107 0] : %

: 0 0 o

.............................. %é

SMT
query
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Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from -
spoofing an Invalid exception in the first execution - ..o oa : =
of the multiply instruction. : A= [ 0 0] : 3
> — O
: —1.17x 1073 0] : =
. B= )
: 0 0 >
.............................. X
Disassembly Source Location Event Taint Count
ovss xmml, dword ptr [rcx+rdx*4] main.f90:17 G--—- 1
ulss xmml, dword ptr [rax+rcx*4] main.f90:17 -P-r 1
addss xmmO, xmml main.f£90:17 =PoE 2
axss xmmO, xmml main.f£90:19 --Kr 1
SMT ovss dword ptr [rbp-0x44], xmmO main.f90:19 --K- 0
query |
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Challenge 3: How do we get a representative set of
function executions to test?

Soundness increases as the set of function
executions covers more possible execution paths...

...but covering all possible execution
paths is generally not feasible.
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Approach: Take executions from the library’s regression tests

Rearession Test Eiiecﬁegs Warnings Concrete+ Event
2 Lo Inputs  Traces

Executables ] )
Execution Exception Input 300'
Function % Selector Spoofer Generator Sts

Prototypes
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Evaluation: A BLAS Case Study

e 26 functions from Levels 1 & 2 of the BLAS
e Implementations taken from the Reference BLAS, OpenBLAS, and BLIS

e Binaries generated by GNU (gfortran, gcc) and Intel (ifx, icx) compilers
o different combinations of default, -03, and -ffast-math/-fp-model=fast=[1|2] optimizations

-> 598 (function, implementation, compiler, optimizations) tuples

-> 12 hours of total testing time
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Finding 1: Only 4.4% of spoofed exceptions resulted in warnings

Out of 530K spoofed exceptions, 23K resulted in warnings
-> supports the assumption that most code handles exceptions correctly
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Finding 1: Only 4.4% of spoofed exceptions resulted in warnings

Out of 530K spoofed exceptions, 23K resulted in warnings
-> supports the assumption that most code handles exceptions correctly

Reference BLAS BLIS OpenBLAS

gfortran ifx gcc iCcX gcc icx

—

3 |
£ | |
c - ' ' 0.8 5
[®) i | | -
% E | | 06 2
cC - | | =
i 2 ! ! 0.4 09
. | | A
z ! | 02 2
= [ [ o
: I 1 1 I I 1 | 1 1 1 | | I 1 1 | 1 I | | 0
%, X OL X % X o ® XX o % X % or KX X
Q e TR S < Q S Q S Q A X s
Dy R R %, 30 Q3 %, Q5 Q5 0575, i Qp 73, Q5 Q5 05
Ve @ R, Ry &, Ve 5. 75 % &, e S
s 20,25 0 St 9, S St
: % 7R %9 72
C?(z @(}5 Q%

*Warning Rate = ( # exception-handling failures / # spoofed exceptions ) 25/33



Finding 2: EXCVATE found inputs triggering

exception-handling failures in 5/26 BLAS functions
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Finding 2: EXCVATE found inputs triggering

exception-handling failures in 5/26 BLAS functions

We find three main causes for the failures:
1) Compiler optimizations changing control flow
2) Design/documentation not accounting for NaNs or Infs

3) Implicit zeroes in input matrices

26/33



sgemv / sger

y = aAx + By
A:=axyl +A

EXCVATE found
exception-handling failures
caused by compiler
optimizations that change
control flow in the face of
comparisons involving NaN
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© (in) TRANS: N
©(din) M: 1
L (in) N: 3
© (in) ALPHA: 1.14752e-41
: (in) LDA: 2
sgemv / sger - Gn) INCX: 1
© (in) BETA: 1
© (in) INCY: 1
D (in) A: 90 0 000
© (in) X: nan 0 0

y = acAx + Gy (in) v @

A:=axyl +A

EXCVATE found
exception-handling failures
caused by compiler
optimizations that change
control flow in the face of
comparisons involving NaN
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© (in) TRANS: N
D (in) M: 1
: (dn) N: 3
© (in) ALPHA: 1.14752e-41
: (in) LDA: 2
sgemv / sger . (4n) INCX: 1
© (in) BETA: 1
© (in) INCY: 1
S (in) A: O 00 000
© (in) X: nan 0 0

y = acAx + Gy (in) v @

A:=axyl +A

Reference BLAS BLIS OpenBLAS

GNU default

w/-03

EXCVATE found wi -ffast-math

. . . w/ -O3 -ffast-math
exception-handling failures

Intel default

caused by compiler W/ 03

optimizations that change w/ -03 -fp-model=fast=1

. w/ -0O3 -fp-model=fast=2
control flow in the face of

comparisons involving NaN

27/33




© (in) TRANS: N
D(in) M: o1
L (in) N: 3
© (in) ALPHA: 1.14752e-41
© (in) LDA: 2
sgemv / sger - Gn) INCX: 1
© (in) BETA: 1
© (in) INCY: 1
: (in) A: 000000
© (in) X: nan 0 0

y (= aAx + By - Gin) v: o0

A:=axyl +A

Reference BLAS BLIS OpenBLAS
GNU default
w/ -O:
EXCVATE found W/ frast-math .~ (out) v:ie |

w/ -O3 -ffast-math (out) Y: 0

exception-handling failures Intel default |

caused by compiler w03l % (out) v: nan

optimizations that change w03 fp-modeast= 1
. w/ -O3 -fp-model=fast=
control flow in the face of

comparisons involving NaN
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sgemv / sger

y = aAx + By
A:=axyl +A

EXCVATE found
exception-handling failures
caused by compiler
optimizations that change
control flow in the face of
comparisons involving NaN

C(in) M: 2

o (in) N: 1

© (din) ALPHA: 1.14752e-41
© (in) INCX: 1

: (in) INCY: 1

 (in) LDA: 3

D (in) X: 0 @

© (in) Y: nan

: (in) A: 000

Reference BLAS BLIS

GNU default

w/ -03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

(out) A: 06 0 ©
(out) A: 06 0 0

(out) A: 0 0 ©
(out) A: 06 0 0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast=

(out) A: 06 0 0 (out) A: 06 0 0
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srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

Reference BLAS

BLIS

OpenBLAS

GNU default

w/-03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

w/ -03

w/ -O3 -fp-model=fast=1

w/ -0O3 -fp-model=fast=2
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srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

©(din) N: 1
© (in) INCX: 1
© (in) INCY: 1
© (in) SPARAM:
© (in) SX: 0
© (din) SY: ©

nan @ @ 0 0 :

Reference BLAS

BLIS

OpenBLAS

GNU default

w/-03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

w/ -03

w/ -O3 -fp-model=fast=1

w/ -0O3 -fp-model=fast=2
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srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

©(din) N: 1

© (in) INCX: 1

© (in) INCY: 1 :
© (in) SPARAM: nan 0 0 0 0 :
© (din) SX: © :
© (in) SY: ©

Reference BLAS OpenBLAS

GNU default

w/ -O3 -ffast-math (out) SX: O
Intel default (out) SY: 0

w/ -0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast=
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© (in) SD1: inf : © (in) SD1: 1.17549e-38
srotmg / srotm Gimy S0z d.9se76 | (im) b2 14013645

© (in) SX1: nan ; © (in) SX1: nan
 (in) SY1: -inf : © (in) SY1: -1.66667 :
i (in) SPARAM: @ 6 0 @ O : : (in) SPARAM: ©@ 6 0 @ O :

Generate and apply a
modified Givens rotation,

res pectively Reference BLAS BLIS OpenBLAS

GNU default

w/-03

EXCVATE found multiple w/ ffast-math

different exception-handling i

Intel default

failures necessitating clearer Wi 03

documentation and even w/ -03 -fp-model=fast=1

. . w/ -0O3 -fp-model=fast=2
possible deprecation
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srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

© (in) SD1: inf : © (in) SD1: 1.17549e-38

© (in) SD2: -1.99976 § © (in) SD2: -1.4013e-45

© (in) SX1: nan : © (in) SX1: nan

© (in) SY1: —inf § © (in) SY1: -1.66667 _
© (in) SPARAM: 0 0 0 0 O © (in) SPARAM: 0 0 0 0 O :

Reference BLAS OpenBLAS

GNU default

w/ -O3 -ffast-math (out) SD1: ©

(out) SD2: o
Intel default (out) SX1: o

Wi -0 (out) SPARAM: -1 0 0 0 0 0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast=
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srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

© (in) SD1: inf : © (in) SD1: 1.17549e-38

© (in) SD2: -1.99976 § © (in) SD2: -1.4013e-45

© (in) SX1: nan : © (in) SX1: nan

© (in) SY1: —inf § © (in) SY1: -1.66667 _
© (in) SPARAM: 0 0 0 0 O © (in) SPARAM: 0 0 0 0 O :

Reference BLAS OpenBLAS

GNU default

w/ -O3 -ffast-math (out) SD1: ©

(out) SD2: o
Intel default (out) SX1: o

Wi -0 (out) SPARAM: -1 0 0 0 0 0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast=
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srotmg / srotm (i) so: inf

: (in) SD2: -1.23382e-05 :
© (in) SX1: -1.81899e-12
© (in) SY1: -2.21834e-39 :
© (in) SPARAM: 0 0 0 0 0 :

Generate and apply a SR e
modified Givens rotation,

res pectively Reference BLAS BLIS OpenBLAS

GNU default

w/-03

EXCVATE found multiple w/ ffast-math

different exception-handling i

Intel default

failures necessitating clearer Wi 03

documentation and even w/ -03 -fp-model=fast=1

. . w/ -0O3 -fp-model=fast=2
possible deprecation
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srotmg / srotm (i) so: inf

: (in) SD2: -1.23382e-05 :
© (in) SX1: -1.81899%e-12
© (in) SY1: -2.21834e-39 :
© (in) SPARAM: 0 0 0 0 0

Generate and apply a SR e
modified Givens rotation,

res pectively Reference BLAS BLIS OpenBLAS

GNU default

w/-03

EXCVATE found multiple w/ ffast-math

different exception-handling i

Intel default

failures necessitating clearer Wi 03

documentation and even w/ -03 -fp-model=fast=1

) . w/ -O3 -fp-model=fast=2 NaNs in output
possible deprecation
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srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

: (in) SD1: inf :
: (in) SD2: -1.23382e-05 :
© (in) SX1: -1.81899%e-12 :
© (in) SY1: -2.21834e-39 :
: (in) SPARAM: 0 0 0 0 0 :

Reference BLAS

OpenBLAS

GNU default

w/ -O3 -ffast-math

Intel default

w/ -0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast= Undocumented Error Code NaNs in output
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EXCVATE found exception
handling failures in all tuples
due to the handling of implicit
zeros in the banded matrix
representation.

Reference BLAS

BLIS

OpenBLAS

GNU default

w/-03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

w/ -03

w/ -O3 -fp-model=fast=1

w/ -0O3 -fp-model=fast=2
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EXCVATE found exception
handling failures in all tuples
due to the handling of implicit
zeros in the banded matrix
representation.

© (in) TRANS: N
D (din) M: 2

© (in) N: 5

© (in) KL: ©

© (in) KU: ©

© (in) ALPHA: 1
: (in) LDA: 2

: (in) INCX: -1
 (in) BETA: 0
© (in) INCY: 1

426326 X107 0 0 0 0

 (in) A: 4.26326e-14 -1 -1

s =il =il =1l =i, =il =6 =il

(in) X: nan -1 -1 -1 0

S (din) Y: 0 -1

0

-1

0

0

0

Reference BLAS

BLIS

OpenBLAS

GNU default

w/-03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

w/ -03

w/ -O3 -fp-model=fast=1

w/ -0O3 -fp-model=fast=2
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TRANS: N
M: 2
N: 5
KL: ©

sgbmv - Gn) ALpbA: 1 426326 104 0 0 0 0
© (in) LDA: 2 :

INCX: -1 0 -1 0 0 0

: BETA: 0
__ © (in) INCY: 1
Yy = aAx + 5}’ © (dn) A: 4.26326e-14 -1 -1
t-1-1-1-1-1-1-1
: (in) X: nan -1 -1 -1 0
© (in) Y: 0 -1

Reference BLAS BLIS OpenBLAS

EXCVATE found exception ]
handling failures in all tuples %

w/ -0

due to the handling of implicit
zeros in the banded matrix
(out) Y¥: 0 1

.
representation.

w/ -O3 -fp-model=fast=1
w/ -O3 -fp-model=fast=2




We have...

...introduced the problem of testing exception handling
e And why current input-generation tools are a poor fit for the problem

...described a novel approach to this problem
e Targeting binary executables using exception spoofing and constraint solving

e Implemented in the prototype tool EXCVATE

...demonstrated our approach on the BLAS

e Tested across multiple implementations, compilers, compiler optimizations
e Found exception-handling failures in 5/26 functions

Source code and data available at https://qgithub.com/ucd-plse/EXCVATE
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Appendices



Approach: Take executions from the library’s regression tests

Selected :
3 . Warnings Concrete ;| Event
Regression Test Executions Inputs  Traces
Executables . )
Execution Exception Input g,,'
Function Selector Spoofer Generator Ss
Prototypes P e e
L I SR
2 I B S
e -~ -
e

For each function execution:

If we do not have a matching prototype:
Skip

Construct ID for the function execution

If we have not already seen this ID:

Save the function execution




Future Work

e Improve scalability
o Reducing redundant spoofs
o Reducing redundant SMT queries

e Improve soundness
o Increasing path coverage
o Explore static methods

e Support new targets
o  Multithreaded programs

o Complex-valued functions
o More ISAs: FMA, AVX-512, PTX, CDNA



