EXcVATE: Spoofing Exceptions and Solving Constraints
to Test Exception Handling in Numerical Libraries

Jackson Vanover’, James Demmel*, Xiaoye Sherry Li*, Cindy Rubio-Gonzalez"

“University of California, Davis
TUniversity of California, Berkeley
fLawrence Berkeley National Laboratory

UCDAVIS

UNIVERSITY OF CALIFORNIA

U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research, under award DE-SC0020286,
and the National Science Foundation under award CCF-1750983.

Numerical code should be correct

1/33

Numerical code should be correct

but floating-point arithmetic is inherently error-prone.

1/33

Numerical code should be correct

but floating-point arithmetic is inherently error-prone.

OVERFLOW
DIVIDE-BY-ZERO

INVALID
INEXACT
UNDERFLOW

1/33

Numerical

code should
be correct

2/33

Numerical
code should

be correct

View exceptions as bugs:
Make your code exception-free!

2/33

Numerical
code should

be correct

View exceptions as bugs: View exceptions as inevitabilities:
Make your code exception-free! Ensure correct exception handling!

2/33

1AB[maz

3/33

3/33

function mmMaxNorm (dim, A, B)

result = 0.0
dim
= 1, dim
acc = 0.0

do k = 1, dim

acc = acc + A(i,k) * B(k,J)

end do
result = max(result, abs (acc))
end do

end do

end function mmMaxNorm

3/33

[0.0 0.0]
A=
—3.40282 x 10%® —2.4245

[0.0 3.06254 x 1038 }
0.0 —3.08694 x 1038

Sy

Foe e s aeEn (Em, Ay 2 SRR TR PP

result = 0.0

do 1 = 1, dim

do j = 1, dim

acc = 0.0
do k = 1, dim
acc = acc + A(i,k) * B(k,3J)
end do
result = max(result, abs (acc))

end do

end function mmMaxNorm

3/33

function mmMaxNorm (dim,

result = 0.0
do 1 = 1, dim
do j = 1, dim
acc = 0.0

do k = 1, dim

acc = acc + A(i,k) * B(k,J)

end do

result = max(result, abs (acc))
end do
do

end function mmMaxNorm

gfortran

oy

0.0 0.0
[—3.40282 x 1038

0.0 3.06254 x 1038
[0.0 —3.08694 x 10%

bin1

—2.4245

|

|

3/33

function mmMaxNorm (dim,

result = 0.0
do i = 1, dim
do j = 1, dim
0.0
do k = 1, dim

dCE

acc = acc + A(i,k) * B(k,J)

end do

result = max(result, abs (acc))
end do
do

end function mmMaxNorm

gfortran

0.0 0.0
- [—3.40282 x 10% —2.4245]
~ [0.0 3.06254 x 10%
B [0.0 —3.08694 x 1038}

oy

3/33

Tx000016eb
0x000016ec
0x00001805
0x000018£3

mov eax, dword [rax]

cage

mov quord [var_20n], rax

mov rax, quord [var 20n]
0

movaxd rdx, edx

mov quord [var_26k], rdx

mov rdx, rax

imul rdx, quord (var_28h]
o

a
mov quord [var_30n1, rax
mov rdx, quord (var_30h]

ov rox, qeord [din]
mov ecx, dword [rex]
movaxd rex, ecx.
mov quord [var_38h, rex
mov rex, rdx

1

omp dword [11, ecx

gfortran-generated binary

moves xmn0, dword [result]

rooroia | mov we, s (e
oy mov et Mrord ol fox00001a%6 pop zbp
0001563 mov dword 131 e o
w1 e
seta a1
movax et ail
Cert ez, et
Jne oxiase
CromoToad | pror w0,
0AO00DI0e1 movas dword lacel, xem0 R
CRO000I0e6 mov 2, quord [din ox000 33 avora (4, 1
CR0000ISes mov 8, dord [zdi oxo00 Sep Oxiden
Oro0noioed mov awera (e 1
o dword 11, w50
i ail
movax st ail
e, e
Soc 0wt
i, dvord 01
novexd £, ed
felo s zas
Gwora 141
_
s (eas + zovq) | [Oe0000185e nop
T CROD001a36 maves s, dvord (rasult]
voxd ral, eai 0x00001264 moves xmm0, dword (ace]
A e 0x00001a69 am2, dword [0x00002180]
ono0001a7 -
i e oxo0001474 i
Ebh i 0200001478 Tresule], xm0
Y ox0000147a 1
o 0x00001a81
word
0. aword. (xai + 9%
mlas om0, sl
moves mmd, dword face]
addes w0, xurl
movas uord lacel <m0
W 4/33
oxovoviase Smo oxides

Ox000016e5. push rop

mov quord [var_20n], rax
mov rax, quord (var_20n]

The eighth execution of this add instruction

triggers an “Invalid” exception, generating a
NaN that is ultimately lost.

a
mov quord [var_30n1, rax

UxUU0U mov

0x00001

movs

0x00001a0la imul rdi, rax .

0x00001a0e

=
Q
W
jor
N

0x0000]

mov

mov_dword [i]

0x00001alt® movs

omp dword [11, ecx

gfortran-generated binary

0x00001a18

0x000019b7 Jne 0x1a90

0x00001lalb mov

0x0000190 nop
0200001291 moves xmn0, dword [result]
0x0000195 pop xho

0x00001297 rat

0 ‘/‘ "“ ‘/‘)T a7 oOZ7 0x000019bd mov rsi, gword [(dim]
0x00001alf movs repprel N e e ey

y 0x000019¢3 mov dword [31, 1

0x00001a25 mov

0x000015ca
0x000019¢a

0x00001a28 movsxd

la2b imul rdi, rdx .

op
ad dword (1],
jmp 0x19aa

mov

. 0x000019ea mov r8d, dword [rdi]
0x00001924 mov dword [k], 1

0x00001a36 movs

. 0x000019£4 omp dword [k], r8a
a . 0x000019£8 setg dil
QO rdi . 0x000019£¢ movax edi, dil
0x00001200 cest eai, edi
0x00001202 3ne Oxlase

0x00001a3c rdi,

0x00001a40 xmmQO, C

0x00001a4d6

xmmO, xmml
0x00001ada

0x00001a4f

0x00001a53

000001250 nop.

0x00001a5¢ roves xmmi, dword [result]

0x00001264 movss wmm0, dword (ace)

0x00001269 movss xrm2, dword [0x00002180]
ey

xmml, dword [acc]
xmm0, xmml
dword [acc], xmmO

[k], 1

s
0x00001a78 movss dword [result], xmm0
0x00001274 add dword (3], 1
0x00001281 3mp Ox10ca

1a58

0x0000

0x00001a

4/33

0x0000125¢

function mmMaxNorm (dim,

result = 0.0
do i = 1, dim
do j = 1, dim
0.0
do k = 1, dim

dCE

acc = acc + A(i,k) * B(k,J)

end do

result = max(result, abs (acc))
end do
do

end function mmMaxNorm

gfortran

0.0 0.0
- [—3.40282 x 10% —2.4245]
~ [0.0 3.06254 x 10%
B [0.0 —3.08694 x 1038}

oy

3/33

[0.0 0.0]
A =
—3.40282 x 10%® —2.4245

B [0.0 3.06254 x 10% w
(0.0 —3.08694 x 10°

oy

function mmMaxNorm (dim, /

result = 0.0 i b. 1
do i = 1, dim gfortran n

do j =1, dim im“““““““““““““““m

acc = 0.0

do k = 1, dim binz
acc = acc + A(i,k) * B(k,3J)

end do

result = max(result, abs (acc))

end do
do

end function mmMaxNorm

5/33

[0.0 0.0]
A =
—3.40282 x 10%® —2.4245

B [0.0 3.06254 x 10 w
(0.0 —3.08694 x 10°

oy

function mmMaxNorm (dim, /

result = 0.0 fi bin1
do i = 1, dim gfortran : n

do j =1, dim é im““““““““““““““mj

acc = 0.0 8 L ccasacasacasacanasanacasasasasass: _

do k = 1, dim bin2
acc = acc + A(i,k) * B(k,J)

end do

result = max(result, abs (acc))

end do
do

end function mmMaxNorm

5/33

function mmMaxNorm (dim, /

result = 0.0

do 1 =

do

1, dim
J =1, dim
acc = 0.0
do k = 1, dim

acc = acc + A(i,k) * B(k,7J)

end do

result = max(result, abs (acc))

end do

end do

end function mmMaxNorm

0.0

A=
[—3.40282 x 1038
3.06254 x 1038 }
—3.08694 x 108

oy

B [0.0
0.0

0.0
—2.4245

gfortran

gfortran
-fdefault-real-8

(increase FP precision to 64-bit)

5/33

0.0 0.0
[—3.40282 x 1038 —2.4245]
_ [0.0 3.06254 x 10
B [0.0 —3.08694 x 1038}

oy

function mmMaxNorm (dim, /

result = 0.0

do i = 1, dim gfortran

do j = 1, dim ;i im““““““““““““““mj
acc = 0.0 . ISR _

do k = 1, dim

acc = acc + A(i,k) * B(k,7J)

end do
result = max(result, abs (acc)) P

end do

Ao gfortran
e -fdefault-real-8

end function mmMaxNorm (increase FP precision to 64-bit)

Numerical
code should

be correct

View exceptions as bugs: View exceptions as inevitabilities:
Make your code exception-free! Ensure correct exception handling!

gfortran
-fdefault-real-8

(increase FP precision to 64-bit)

Numerical
code should

be correct

View exceptions as bugs: View exceptions as inevitabilities:
Make your code exception-free! Ensure correct exception handling!

gfortran
-fdefault-real-8

(increase FP precision to 64-bit)

Numerical
code should

be correct

View exceptions as bugs: View exceptions as inevitabilities:
Make your code exception-free! Ensure correct exception handling!

gfortran
-fdefault-real-8

(increase FP precision to 64-bit)

When an Overflow, Divide-by-Zero, or Invalid exception occurs,
a sound exception-handling policy notifies users by either...

1. The presence of EVs in the output
2. Some library-specific mechanism triggered by checking for
their presence at some point during the execution.

7/33

When an Overflow, Divide-by-Zero, or Invalid exception occurs,
a sound exception-handling policy notifies users by either...

1. The presence of EVs in the output
2. Some library-specific mechanism triggered by checking for
their presence at some point during the execution.

This is the policy adopted by the reference LAPACK/BLAS implementations [1].
-> How can we test this?

[1] J. Demmel, et al. “Proposed Consistent Exception Handling for the BLAS and LAPACK”. 7/33

EXCVATE

Exceptional Value Tester

8/33

Regression Test
Executables

Function
Prototypes

EXCVATE is composed of three components
that address three key challenges...

8/33

Challenge 1: Existing input generation techniques
are not well-suited to testing exception handling

9/33

Challenge 1: Existing input generation techniques
are not well-suited to testing exception handling

Pre-existing works use a variety of input generation techniques to yield
floating-point inputs that trigger exceptions.

o e.g., fuzzing [1], symbolic execution [2,3], Bayesian optimization [4]

[1] A. Tran, I. Laguna, G. Gopalakrishnan. “FPBoxer: Efficient Input-Generation for Targeting Floating-Point Exceptions in GPU Programs”.

[2] E.T. Barr, T. Vo, V. Le, Z. Su. “Automatic Detection of Floating-Point Exceptions”.

[3] X. Wu, L. Li, J. Zhang. “Symbolic Execution with Value-Range Analysis for Floating-Point Exception Detection”. 9/33
[4] 1. Laguna, G. Gopalakrishnan. “Finding Inputs that Trigger Floating-Point Exceptions in GPUs via Bayesian Optimization”.

Challenge 1: Existing input generation techniques
are not well-suited to testing exception handling

Pre-existing works use a variety of input generation techniques to yield
floating-point inputs that trigger exceptions.

o e.g., fuzzing [1], symbolic execution [2,3], Bayesian optimization [4]

They are designed with the “all exceptions are bugs” mindset; they only seek
to trigger exceptions...

[1] A. Tran, I. Laguna, G. Gopalakrishnan. “FPBoxer: Efficient Input-Generation for Targeting Floating-Point Exceptions in GPU Programs”.

[2] E.T. Barr, T. Vo, V. Le, Z. Su. “Automatic Detection of Floating-Point Exceptions”.

[3] X. Wu, L. Li, J. Zhang. “Symbolic Execution with Value-Range Analysis for Floating-Point Exception Detection”. 9/33
[4] 1. Laguna, G. Gopalakrishnan. “Finding Inputs that Trigger Floating-Point Exceptions in GPUs via Bayesian Optimization”.

Challenge 1: Existing input generation techniques
are not well-suited to testing exception handling

Pre-existing works use a variety of input generation techniques to yield
floating-point inputs that trigger exceptions.

o e.g., fuzzing [1], symbolic execution [2,3], Bayesian optimization [4]

They are designed with the “all exceptions are bugs” mindset; they only seek
to trigger exceptions... but most code should handle exceptions correctly!

o |EEE754 mandates propagation of exceptional-values in most cases
o Developers often do a good job!

[1] A. Tran, I. Laguna, G. Gopalakrishnan. “FPBoxer: Efficient Input-Generation for Targeting Floating-Point Exceptions in GPU Programs”.

[2] E.T. Barr, T. Vo, V. Le, Z. Su. “Automatic Detection of Floating-Point Exceptions”.

[3] X. Wu, L. Li, J. Zhang. “Symbolic Execution with Value-Range Analysis for Floating-Point Exception Detection”. 9/33
[4] 1. Laguna, G. Gopalakrishnan. “Finding Inputs that Trigger Floating-Point Exceptions in GPUs via Bayesian Optimization”.

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected Warninas
Executions g

Exception 300'
Spoofer Sts

e

10/33

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected

. Warnings
Executions 9

Exception
Spoofer

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected

. Warnings
Executions 9

Exception
Spoofer

For each function execution:

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected

. Warnings
Executions 9

Exception
Spoofer

For each function execution:

For each instruction execution that could
trigger an “Invalid” exception:

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected

. Warnings
Executions 9

Exception
Spoofer

For each function execution:

For each instruction execution that could
trigger an “Invalid” exception:

Replay the function execution

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected

. Warnings
Executions 9

Exception
Spoofer

For each function execution:

For each instruction execution that could
trigger an “Invalid” exception:

Replay the function execution

Spoof an exception by overwriting the

instruction’s output with a NaN

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

Selected

. Warnings
Executions 9

Exception
Spoofer

For each function execution:

For each instruction execution that could
trigger an “Invalid” exception:

Replay the function execution

Spoof an exception by overwriting the

instruction’s output with a NaN

Raise a warning if handled incorrectly

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

ifx-generated binary

e : N - 11/33

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3]
that could encounter “Invalid” exceptions. 2 4]
4 2] ¢
B =
3 1]

ifx-generated binary

sub rsi, 1

imul rdx, rsi

add rax, rdx

sub rcx, 1

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

s dword [rbp-0x98], xmmO
eax, dword [rbp-0x8c]

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary
that could encounter “Invalid” exceptions.

These two are in a block that is executed eight : B= :
times -> 2 x 8 =16 possible exception sites. R R EEEERIRPY '

ifx-generated binary

sub rsi, 1

imul rdx, rsi

add rax, rdx
sub rcx, 1
mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

movss dword [rbp-0x98], xmmO

eax, dword [rbp-0x8c]

dd eax, 1
dw
mov eax, dword [rbp

ord [rbp-0x8c], eax

cmp eax, dword [rbp-0xa4
jle 0x405a0a

==11/33

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] >

that could encounter “Invalid” exceptions. 2 4] =

4 2] T

These two are in a block that is executed eight . B= 3 1 =

times -> 2 x 8 =16 possible exception sites. R Y : Q

b ()

)

So, replay the function execution 16 R X
times, spoofing a different Invalid il s, sk
exception each time. sub rex, 1

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml
ovss dword [rbp-0x98], xmmO

, dword [rbp-0x8c]

ecax

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] >

that could encounter “Invalid” exceptions. 2 4] =

491 T Te

These two are in a block that is executed eight = 3 1 =

times -> 2x8 =16 possible exception sites. rrrreeeeeieeeennn : Q

b ()

)

So, replay the function execution 16 R é
times, spoofing a different Invalid il s, sk
exception each time. sub rox, 1

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml
vss dword [rbp-0x98], xmmO

Table of Test Results /
eax, dword [rbp-0x8c]
x, 1

mul ord [rbp-0x8c]
, dword [rbp-(
add) [rbp-(

1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] >

that could encounter “Invalid” exceptions. 2 4] 2

49 — O

: : o

These two are in a block that is executed eight . B= 3 1] =

times -> 2x8 =16 possible exception sites. rrrreeeeeieeeennn ' Q

()

)

So, replay the function execution 16 o t(zVerWriteo & &
times, spoofing a different Invalid imul rdx, rsi ® st fimetgeut With Nap,

o o add rax, rdx

eXCeptIOn eaCh tlme sub rcx, 1 Sexecuted

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

Tab|e Of TeSt ReSU|tS movss dword ,prfOx%?J ' xmmO
mov eax, dword [rbp-0x8c]
1
mul ord [rbp-0x8c]
dword [rbp-!
add d [rbp-(

1 2 3 4 5 6 - 8

[teration in which EXCVATE
spoofs an exception

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] >

that could encounter “Invalid” exceptions. 2 4] c

4 9] — e

. ©

These two are in a block that is executed eight % 3 1] =

times -> 2x8 =16 possible exception sites. ~ rrreeeieieens : 0

(]

5 (@)}

So, replay the function execution 16 . tl?)v/e rite) X
times, spoofing a different Invalid imul rdx, rsi e%t/meulfuf with Nan

o o add rax, rdx

exception each time. sub rox; 1 Xecyteq

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml
vss dword [rbp-0x98], xmmO
eax, dword [rbp-0x8c]

Table of Test Results

mul

add

1 2 3 4 5) 7 8

[teration in which EXCVATE
spoofs an exception

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3 >

that could encounter “Invalid” exceptions. 2 4] 2

4 9] =

These two are in a block that is executed eight B = 3 1| =

times -> 2x 8 =16 possible exception sites. SETTREEE EEREERER g

. (@)

So, replay the function execution 16 . ; therWriteo &
times, spoofing a different Invalid ol e%timeul.?;‘s’fe

eXCeptlon eaCh tlme sub rcx, 1
mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

vss dword [rbp-0x98], xmmO

Table of Test Results /
eax, dword [rbp-0x8c]
x, 1

ord [rbp-0x8c]
, dword [rbp-|
[rbp-(

mul

add

1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary At 3] >
that could encounter “Invalid” exceptions. |2 4] g
(4 2] - ﬁ
These two are in a block that is executed eight 15 3 1 =
times -> 2 x 8 =16 possible exception sites. SETTREEE EREREEEEE: g
. (@)
So, replay the function execution 16 . ; therWriteo " &
times, spoofing a different Invalid imul rdx, rsi e%timeul.;p.“t Wit,
exception each time. o E

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

Table of Test Results movss dword Lf*p*PJXOﬂ}J ’ xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 mov dword [rbp-0x8c], eax
mov eax, dword [rbp-0x8c]
add cmp eax, dword [rbp-0xa4d]

| jle 0x405a0a
1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary At 3] >
that could encounter “Invalid” exceptions. |2 4] g
(4 2] - ﬁ
These two are in a block that is executed eight 15 3 1 =
times -> 2 x 8 =16 possible exception sites. SETTREEE EREREEEEE: g
. (@)
So, replay the function execution 16 . ; therWr/teo " &
times, spoofing a different Invalid imul rdx, rsi e%timeul.;p.“t Wit,
exception each time. o E

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

Table of Test Results movss dword Lf*p*PJXOﬂ}J ’ xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 8 mov dword [rbp-0x8c], eax
mov eax, dword [rbp-0x8c]
add cmp eax, dword [rbp-0xa4d]

| Jjle 0x405a0a

1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] : >

that could encounter “Invalid” exceptions. 2 4] 2

4 9] — e

. ©

These two are in a block that is executed eight 5= 3 1] =

times -> 2x8 =16 possible exception sites. ~ rrrrrereeeend : Q

(]

5 (@)}

So, replay the function execution 16 o tg\/erwr,-,eo . X
times, spoofing a different Invalid imul rdx, rsi °6th time%ut With Nap

o o add rax, rdx

exception each time. i rox. 1 > SXecypey

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

Tab|e Of TeSt ReSU|tS movss dword [rbp-0x98], xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 8 8 mov dword [rbp-0x8c], eax

mov eax, dword [rbp-0x8c]

add <ltmp fax, dﬂford [rbp-0xa4d]
| jle 0x405a0a

1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary 1 3] : >

that could encounter “Invalid” exceptions. 2 4] 2

4 9] — e

. o

These two are in a block that is executed eight 5= 3 1] =

times -> 2x8 =16 possible exception sites. ~ rrrrrereeeend : Q

(]

2 (@)

So, replay the function execution 16 o OVerwr,,e ‘. Fa
times, spoofing a different Invali : Dtime ;" With gy,

o o add rax, rdx

exception each time. i rox. 1 > SXecypey

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml

Tab|e Of TeSt ReSU|tS movss dword [rbp-0x98], xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 8 8 mov dword [rbp-0x8c], eax

mov eax, dword [rbp-0x8c]

add <ltmp fax, dﬂford [rbp-0xa4d]
| jle 0x405a0a

1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary
that could encounter “Invalid” exceptions.

These two are in a block that is executed eight
times -> 2 x8 =16 possible exception sites.

So, replay the function execution 16
times, spoofing a different Invalid
exception each time.

Table of Test Results

mul

20 20 20 20 8

8

add

movss dword

mov dword
add eax, 1
mov dword

eax,

eax,

mov dword

cmp eax, dword

| jle 0x405a0a

1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

mulss xmml, dword [rax + rcx*4]
addss xmm0O, xmml
[rbp-0x981],

[rbp-0x8c],

1 3] -
2 4]
L[4 7] =
3 1]
I Yerwriy,
sub rsi, 1 th oy
L gt i
sub rex, 1 Uteq

xmm0
[rbp-0x8c]

eax
[rbp-0x8c]
[rbp-0xa4d]

ifx-generated binary

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary
that could encounter “Invalid” exceptions.

These two are in a block that is executed eight :
times -> 2x8 =16 possible exception sites. rrrreeeeeieeeennn '

ifx-generated binary

So, replay the function execution 16 o
times, spoofing a different Invalid imul rdx, rsi

. . add rax, rdx
eXCeptlon eaCh tlme sub rcx, 1

mulss xmml, dword [rax + rcx*4]
addss xmmO, xmml

Tab|e Of TeSt ReSU|tS movss dword [rbp-0x98], xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 8 8 mov dword [rbp-0x8c], eax
mov eax, dword [rbp-0x8c]
add cmp eax, dword [rbp-0xa4d]

jle 0x405a0a

1 2 3 4 5 6 7 8

[teration in which EXCVATE
spoofs an exception

==01/33

Approach: spoof exceptions via binary rewriting to cheaply find handling failures

There are only two instructions in the ifx binary
that could encounter “Invalid” exceptions.

These two are in a block that is executed eight :
times -> 2x8 =16 possible exception sites. rrrreeeeeieeeennn '

ifx-generated binary

So, replay the function execution 16 o
times, spoofing a different Invalid imul rdx, rsi

. . add rax, rdx

exceptlon each time. sub rcx, 1

mulss xmml, dword [rax + rcx*4]
addss xmmO, xmml

Tab|e Of TeSt ReSU|tS movss dword [rbp-0x98], xmmO
mov eax, dword [rbp-0x8c]

add eax, 1

mul 20 20 20 20 8 8 mov dword [rbp-0x8c], eax
mov eax, dword [rbp-0x8c]
cmp eax, dword [rbp-0xa4d]

=4 20 20 20 20 8 |8 .

1 2 3 4 5 6 7 8

[teration in which EXCVATE

SpOOfS an exception - 11/33

Challenge 2: How do we “reify” a spoofed exception
that results in an exception-handling failure?

12/33

Challenge 2: How do we “reify” a spoofed exception
that results in an exception-handling failure?

Warnings can originate from spoofed Invalid exceptions that are not possible.

o e.g.,if (isfinite(x) && isfinite(y)) z = x*y; ->Invalid exception is impossible

12/33

Challenge 2: How do we “reify” a spoofed exception
that results in an exception-handling failure?

Warnings can originate from spoofed Invalid exceptions that are not possible.
o eg.,if (isfinite(x) && isfinite(y)) z = x*y; ->Invalid exception is impossible
For a true buggy case, EXCVATE must create an input that:

1. triggers the spoofed Invalid exception
2. preserves the control flow that resulted in failed exception handling

12/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Selected Warnings Concrete Event
Executions

+
' Inputs Traces
Exception Input 300'
% Spoofer Generator Sts

13/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Eig(l:e‘f;eg Warnings Concrete Event
utions Inputs Traces

Exception Input .9,,0'
Spoofer Generator Sts
~

N
~
~
N
N

Approach: encode the desired behavior (control flow + exception) into an SMT query

Eig(l:e‘f;eg Warnings Concrete Event
utions Inputs Traces

Exception Input .9,,0'
Spoofer Generator Sts
~

N
N

For each warning:

Approach: encode the desired behavior (control flow + exception) into an SMT query

Eig(l:e‘f;eg Warnings Concrete Event
utions Inputs Traces

Exception Input .9,,0'
Spoofer Generator Sts
~

For each warning:

Initialize symbolic “shadow variables” for each FP input

Approach: encode the desired behavior (control flow + exception) into an SMT query

Eig(l:e‘f;eg Warnings Concrete Event
utions Inputs Traces

Exception Input .9,,0'
Spoofer Generator Sts
~

For each warning:
Initialize symbolic “shadow variables” for each FP input

Replay execution with spoof

Approach: encode the desired behavior (control flow + exception) into an SMT query

Selected
Executions

Warnings Concrete ;| Event
Inputs ~ Traces

Exception Input .9,,0'
Spoofer Generator Sts

For each warning:
Initialize symbolic “shadow variables” for each FP input
Replay execution with spoof

For each instruction execution whose operands have
associated symbolic shadow variables:
Add a constraint to the SMT query

Approach: encode the desired behavior (control flow + exception) into an SMT query

Selected
Executions

Warnings Concrete ;| Event
Inputs ~ Traces

Exception Input .9,,0'
Spoofer Generator Sts

For each warning:
Initialize symbolic “shadow variables” for each FP input
Replay execution with spoof

For each instruction execution whose operands have
associated symbolic shadow variables:
Add a constraint to the SMT query

Give query to an SMT solver

Approach: encode the desired behavior (control flow + exception) into an SMT query

Selected
Executions

Warnings Concrete ;| Event
Inputs ~ Traces

Exception Input .9,,0'
Spoofer Generator Sts

For each warning:
Initialize symbolic “shadow variables” for each FP input
Replay execution with spoof

For each instruction execution whose operands have
associated symbolic shadow variables:
Add a constraint to the SMT query

Give query to an SMT solver

If satisfiable:
Run program with generated input

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from

spoofing an Invalid exception in the first execution
of the multiply instruction.

ifx-generated binary

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. = |* 2 k5
: 3 1] 1

.................. ()]

C
>

ag Qa» !

A = X

L P | B

/. 14/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from At 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. = |* 2 k5
: 3 1 1
.................. ()]
C
>
ag Qa» !
A = X
o e
bo b
lgs1n =
! [bl b3

0x7£9deal0970a4
0x7£9dea0970a8
0x7£9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£9dea0970bc
0x7£9dea0970c0

s
o
Q
£
>
wn
Q
=
—
(&}
<

/. 14/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1
spoofing an Invalid exception in the first execution : 2
of the multiply instruction. g |4

: 3

result = 0.

vifx—generated binary

movss xmmO, dword ptr [rbp-0x98]

movss xmml, dword ptr [rcx+rdx*4]
max (result, abs(acc))

mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

s
o
Q
£
>
wn
Q
=
—
(&}
<

==15/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

result = 0.

s
o
Q
£
>
wn
Q
=
—
(&}
<

max (result, abs(acc))

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

movss

movss

mulss
addss
movss

-> |oad acc
xmm0, dword ptr [rbp-0x98]

xmml, dword ptr [rcx+rdx*4]

xmml, dword ptr [rax+rcx*4]
xmmO, xmml
dword ptr [rbp-0x98], xmmO

vifx—generated binary

==15/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

result = 0.

s
o
Q
£
>
wn
Q
=
—
(&}
<

max (result, abs(acc))

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

movss

movss

mulss
addss
movss

-> |oad acc
xmm0, dword ptr [rbp-0x98]

-> load A(i,k)
xmml, dword ptr [rcx+rdx*4]

xmml, dword ptr [rax+rcx*4]
xmmO, xmml
dword ptr [rbp-0x98], xmmO

vifx—generated binary

==15/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

result = 0.

s
o
Q
£
>
wn
Q
=
—
(&}
<

max (result, abs(acc))

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

movss

movss

mulss
addss
movss

-> |oad acc
xmm0, dword ptr [rbp-0x98]

-> load A(i,k)
xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
xmml, dword ptr [rax+rcx*4]
xmmO, xmml
dword ptr [rbp-0x98], xmmO

vifx—generated binary

==15/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

result = 0.

s
o
Q
£
>
wn
Q
=
—
(&}
<

max (result, abs(acc))

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

movss

movss

mulss
addss
movss

-> |oad acc
xmm0, dword ptr [rbp-0x98]

-> load A(i,k)
xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
xmml, dword ptr [rax+rcx*4]
xmmO, xmml
dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

vifx—generated binary

==15/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution :2 4: > 5
of the multiply instruction. = |* 2 @
: 3 1] ©

.................. ()

c

o

-> |oad acc ...>I_<

movss xmmO, dword ptr [rbp-0x98]

-> load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

s
o
Q
£
>
wn
Q
=
—
(&}
<

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

-> |oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7f9dea0970a4
0x7£9dea0970a8
0x7f£9deal0970ac

0x7£9dea0970b0 Read Operands
0x7£9dea0970b4

0x7£9dea0970b8
0x7f9dea0970bc 0x7£ffef9945e28
0x7£9dea0970cO

s
o
Q
£
>
wn
Q
=
—
(&}
<

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

of the multiply instruction.

s
o
Q
£
>
wn
Q
=
—
(&}
<

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

1 3] -
A= :
2 4]
i
B— :
3 1]
-> |oad acc
movss xmmO, dword ptr [rbp-0x98]
© > load A(ik)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

vifx—generated binary

/. 16/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

il -> load A(i,k)
movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7f£f9dea0970a4
0x7f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9deal0970cO

s
o
Q
£
>
wn
Q
=
—
(&}
<

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

> load A(i,k) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7f9dea0970a4
0x7£9dea0970a8
0x7f£9deal0970ac

0x7£9dea0970b0 Read Operands
0x7£9dea0970b4

0x7£9dea0970b8
0x7f9dea0970bc 0x7£9dea0970a4
0x7£9dea0970cO

s
o
Q
£
>
wn
Q
=
—
(&}
<

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

> load A(i,k) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7£9deal0970a4

Read Operands

0x7£9dea0970a4

s
o
Q
£
>
wn
Q
=
—
(&}
<

/. 17/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] 'ﬁ;

assert (= xmml_0 0x7£9dea0970a4_0)

-> load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

0x7£9deal0970a4

SMT

Read Operands
query

0x7£9dea0970a4

s
o
Q
£
>
wn
Q
=
—
(&}
<

/. 17/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] 'ﬁ;

assert (= xmml_0 0x7£9dea0970a4_0)

-> load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc
0x7£9deal0970a4

SMT

Read Operands
query

0x7£9dea0970a4

s
o
Q
£
>
wn
Q
=
—
(&}
<

L 17/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

il P multiply with B(k,j)
mulss

xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

xmml
-> accumulate and save acc

0x7f9dea0970a4
0x7£f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7f£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9dea0970cO

SMT
query

s
o
Q
£
>
wn
Q
=
—
(&}
<

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

xmml
-> accumulate and save acc

0x7f9dea0970a4
0x7£9dea0970a8
0x7£9deal0970ac

0x7£9dea0970b0 Read Operands
0x7£9dea0970b4

orsienteros a2
X ea C
0x7£9dea0970c0 0x7£9dea0970b4

SMT
query

s
o
Q
£
>
wn
Q
=
—
(&}
<

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from 1 3] >
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

Read Operands

xmml
0x7£9dea0970b4

0x7£9dea0970b4

s
o
Q
£
>
wn
Q
=
—
(&}
<

/. 18/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from — : , _[1 3] : -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. = |* 2 I5
. 13 1 "c_é
assert (= e 8
xmml_1 ()
(fp.mul rm . Qb
xmml_0 * ->load acc >
0x7£9dea0970b4_0 movss xmm0, dword ptr [rbp-0x98] "':
) . e

) * ->load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

i) -> accumulate and save acc
o
E
SMT 2 Read Operands
query 1) 0x7£9dea0970b4
=
e
O
<

xmml
0x7£9dea0970b4

/. 18/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from : , _[1 3] : >
spoofing an Invalid exception in the first : :2 4: : > 5
execution of the multiply instruction. . B— d2 2
: 3 1] 5
assert (= e 8
xmml_1 (]
(fp.mul rm . Qh
xmml_0 * ->load acc >
0x7£9dea0970b4_0 movss xmm0, dword ptr [rbp-0x98] =
) g .

) * ->load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

assert (fp.isNaN xmml 1) ~__->multiply with B(k})
- mulss xmml, dword ptr [rax+rcx*4]

addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

SMT
query

Read Operands

xmml
0x7£9dea0970b4

0x7£9dea0970b4

Active Symbols

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution : L

of the multiply instruction.

SMT
query

s
o
Q
£
>
wn
Q
=
—
(&}
<

xmm1
0x7f9dea0970a4
0x7£f9deal0970a8
0x7f9deal0970ac
0x7£9dea0970b0
0x7f£9dea0970b4
0x7£9dea0970b8
0x7£f9deal0970bc
0x7£9dea0970cO

A 1 3] -

2 4]

[4 2] -

B = :

3 1]
->|oad acc
movss xmmO, dword ptr [rbp-0x98]

: -> load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

Read Operands

xmml
xmmO

vifx—generated binary

2 19/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from — : , _[1 3] : -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. p—|* 2| @
: 3 1 ©
assert (= e 8
xmm0_0 ()
(fp.add rm g o
#000000000000000000000000000000000 : -> |oad acc X
xmml_1 movss xmmO, dword ptr [rbp-0x98] 'ﬁ;
) . e

) * ->load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

k%) -> accumulate and save acc
o
0

SMT £
77 Read Operands

uer

e] g
e
O
<

xmml
xmmO

/. 19/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from — : , _[1 3] : -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. p—|* 2| @
: 3 1 ©
assert (= e 8
xmm0_0 ()
(fp.add rm g o
#000000000000000000000000000000000 : -> |oad acc X
xmml_1 movss xmmO, dword ptr [rbp-0x98] 'ﬁ;
) . e

) * ->load A(i,k)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO

k%) -> accumulate and save acc
o
0

SMT £
77 Read Operands

uer

e] g
e
O
<

xmml
xmmO

/. 19/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from At 3] -
spoofing an Invalid exception in the first execution : :2 4: : > 5
of the multiply instruction. g |4 2] 5
: 3 1] ©

.................. ()]

c

()

P

->|oad acc X

movss xmmO, dword ptr [rbp-0x98] ':;

© > load A(ik) '

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)

mulss xmml, dword ptr [rax+rcx*4]

— il;ddss xmmO, xmml
— ovss dword ptr [rbp-0x98], xmmO

-> accumulate and save acc
%’ 0x7f9dea0970a4
Ra) 0x7£9dea0970a8
e 0x7£f9deal0970ac
>
SMT 7 015922097000 Read Operands
uer G) X ea
query g
e
(@]
<

0x7£9deal0970b8
0x7£9dea0970bc
0x7£9dea0970c0

2 20/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

assert (= 0x7ffef9945e28 1 xmm0 0)

SMT
query

Active Symbols

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution

1 3] -
2 4]
4 2| -

B = :
3 1]

->|oad acc
movss xmmO, dword ptr [rbp-0x98]
© > load A(ik)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

Read Operands

vifx—generated binary

SL 20/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

of the multiply instruction.

assert (= 9x7ffef9945e28_5 xmm0_0)

0x7ffef9945e28

xmmO

SMT
query

Active Symbols

Let's check the first warning which resulted from
spoofing an Invalid exception in the first execution

1 3] -
2 4]
4 2| -

B = :
3 1]

->|oad acc
movss xmmO, dword ptr [rbp-0x98]
© > load A(ik)

movss xmml, dword ptr [rcx+rdx*4]

-> multiply with B(k,j)
mulss xmml, dword ptr [rax+rcx*4]
addss xmm0O, xmml
movss dword ptr [rbp-0x98], xmmO
-> accumulate and save acc

Read Operands

.'ifx—generated binary

S 2 20/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from

spoofing an Invalid exception in the first execution
of the multiply instruction.

ifx-generated binary

SMT
query

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from

spoofing an Invalid exception in the first execution
of the multiply instruction.

ifx-generated binary

SMT
query

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from -
spoofing an Invalid exception in the first execution-- RO ST B =
of the multiply instruction. : A= [0 0] I5
> ; ©

: B [T117x 107 0] : %

: 0 0 o

.............................. ,_é

SMT
query

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from

of the multiply instruction. : A=

|

ifx-generated binary

SMT
query

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from -
spoofing an Invalid exception in the first execution-- NeN o : =
of the multiply instruction. : A= [0 0] : 3
: —p O

’; B [~117x 107 0] : %

: 0 0 o

.............................. %é

SMT
query

Ae=21/33

Approach: encode the desired behavior (control flow + exception) into an SMT query

Let's check the first warning which resulted from -
spoofing an Invalid exception in the first execution - ..o oa : =
of the multiply instruction. : A= [0 0] : 3
> — O
: —1.17x 1073 0] : =
. B=)
: 0 0 >
.............................. X
Disassembly Source Location Event Taint Count
ovss xmml, dword ptr [rcx+rdx*4] main.f90:17 G--—- 1
ulss xmml, dword ptr [rax+rcx*4] main.f90:17 -P-r 1
addss xmmO, xmml main.f£90:17 =PoE 2
axss xmmO, xmml main.f£90:19 --Kr 1
SMT ovss dword ptr [rbp-0x44], xmmO main.f90:19 --K- 0
query |

/. 21/33

Challenge 3: How do we get a representative set of
function executions to test?

Soundness increases as the set of function
executions covers more possible execution paths...

...but covering all possible execution
paths is generally not feasible.

22/33

Approach: Take executions from the library’s regression tests

Rearession Test Eiiecﬁegs Warnings Concrete+ Event
2 Lo Inputs Traces

Executables])
Execution Exception Input 300'
Function % Selector Spoofer Generator Sts

Prototypes

23/33

Evaluation: A BLAS Case Study

e 26 functions from Levels 1 & 2 of the BLAS
e Implementations taken from the Reference BLAS, OpenBLAS, and BLIS

e Binaries generated by GNU (gfortran, gcc) and Intel (ifx, icx) compilers
o different combinations of default, -03, and -ffast-math/-fp-model=fast=[1|2] optimizations

-> 598 (function, implementation, compiler, optimizations) tuples

-> 12 hours of total testing time

24/33

Finding 1: Only 4.4% of spoofed exceptions resulted in warnings

Out of 530K spoofed exceptions, 23K resulted in warnings
-> supports the assumption that most code handles exceptions correctly

25/33

Finding 1: Only 4.4% of spoofed exceptions resulted in warnings

Out of 530K spoofed exceptions, 23K resulted in warnings
-> supports the assumption that most code handles exceptions correctly

Reference BLAS BLIS OpenBLAS

gfortran ifx gcc iCcX gcc icx

—

3 |
£ | |
c - ' ' 0.8 5
[®) i | | -
% E | | 06 2
cC - | | =
i 2 ! ! 0.4 09
. | | A
z ! | 02 2
= [[o
: I 1 1 I I 1 | 1 1 1 | | I 1 1 | 1 I | | 0
%, X OL X % X o ® XX o % X % or KX X
Q e TR S < Q S Q S Q A X s
Dy R R %, 30 Q3 %, Q5 Q5 0575, i Qp 73, Q5 Q5 05
Ve @ R, Ry &, Ve 5. 75 % &, e S
s 20,25 0 St 9, S St
: % 7R %9 72
C?(z @(}5 Q%

*Warning Rate = (# exception-handling failures / # spoofed exceptions) 25/33

Finding 2: EXCVATE found inputs triggering

exception-handling failures in 5/26 BLAS functions

26/33

Finding 2: EXCVATE found inputs triggering

exception-handling failures in 5/26 BLAS functions

We find three main causes for the failures:

26/33

Finding 2: EXCVATE found inputs triggering

exception-handling failures in 5/26 BLAS functions

We find three main causes for the failures:

1) Compiler optimizations changing control flow

26/33

Finding 2: EXCVATE found inputs triggering

exception-handling failures in 5/26 BLAS functions

We find three main causes for the failures:
1) Compiler optimizations changing control flow

2) Design/documentation not accounting for NaNs or Infs

26/33

Finding 2: EXCVATE found inputs triggering

exception-handling failures in 5/26 BLAS functions

We find three main causes for the failures:
1) Compiler optimizations changing control flow
2) Design/documentation not accounting for NaNs or Infs

3) Implicit zeroes in input matrices

26/33

sgemv / sger

y = aAx + By
A:=axyl +A

EXCVATE found
exception-handling failures
caused by compiler
optimizations that change
control flow in the face of
comparisons involving NaN

27/33

© (in) TRANS: N
©(din) M: 1
L (in) N: 3
© (in) ALPHA: 1.14752e-41
: (in) LDA: 2
sgemv / sger - Gn) INCX: 1
© (in) BETA: 1
© (in) INCY: 1
D (in) A: 90 0 000
© (in) X: nan 0 0

y = acAx + Gy (in) v @

A:=axyl +A

EXCVATE found
exception-handling failures
caused by compiler
optimizations that change
control flow in the face of
comparisons involving NaN

27/33

© (in) TRANS: N
D (in) M: 1
: (dn) N: 3
© (in) ALPHA: 1.14752e-41
: (in) LDA: 2
sgemv / sger . (4n) INCX: 1
© (in) BETA: 1
© (in) INCY: 1
S (in) A: O 00 000
© (in) X: nan 0 0

y = acAx + Gy (in) v @

A:=axyl +A

Reference BLAS BLIS OpenBLAS

GNU default

w/-03

EXCVATE found wi -ffast-math

. . . w/ -O3 -ffast-math
exception-handling failures

Intel default

caused by compiler W/ 03

optimizations that change w/ -03 -fp-model=fast=1

. w/ -0O3 -fp-model=fast=2
control flow in the face of

comparisons involving NaN

27/33

© (in) TRANS: N
D(in) M: o1
L (in) N: 3
© (in) ALPHA: 1.14752e-41
© (in) LDA: 2
sgemv / sger - Gn) INCX: 1
© (in) BETA: 1
© (in) INCY: 1
: (in) A: 000000
© (in) X: nan 0 0

y (= aAx + By - Gin) v: o0

A:=axyl +A

Reference BLAS BLIS OpenBLAS
GNU default
w/ -O:
EXCVATE found W/ frast-math .~ (out) v:ie |

w/ -O3 -ffast-math (out) Y: 0

exception-handling failures Intel default |

caused by compiler w03l % (out) v: nan

optimizations that change w03 fp-modeast= 1
. w/ -O3 -fp-model=fast=
control flow in the face of

comparisons involving NaN

27/33

sgemv / sger

y = aAx + By
A:=axyl +A

EXCVATE found
exception-handling failures
caused by compiler
optimizations that change
control flow in the face of
comparisons involving NaN

C(in) M: 2

o (in) N: 1

© (din) ALPHA: 1.14752e-41
© (in) INCX: 1

: (in) INCY: 1

 (in) LDA: 3

D (in) X: 0 @

© (in) Y: nan

: (in) A: 000

Reference BLAS BLIS

GNU default

w/ -03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

(out) A: 06 0 ©
(out) A: 06 0 0

(out) A: 0 0 ©
(out) A: 06 0 0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast=

(out) A: 06 0 0 (out) A: 06 0 0

28/33

srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

Reference BLAS

BLIS

OpenBLAS

GNU default

w/-03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

w/ -03

w/ -O3 -fp-model=fast=1

w/ -0O3 -fp-model=fast=2

29/33

srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

©(din) N: 1
© (in) INCX: 1
© (in) INCY: 1
© (in) SPARAM:
© (in) SX: 0
© (din) SY: ©

nan @ @ 0 0 :

Reference BLAS

BLIS

OpenBLAS

GNU default

w/-03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

w/ -03

w/ -O3 -fp-model=fast=1

w/ -0O3 -fp-model=fast=2

29/33

srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

©(din) N: 1

© (in) INCX: 1

© (in) INCY: 1 :
© (in) SPARAM: nan 0 0 0 0 :
© (din) SX: © :
© (in) SY: ©

Reference BLAS OpenBLAS

GNU default

w/ -O3 -ffast-math (out) SX: O
Intel default (out) SY: 0

w/ -0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast=

29/33

© (in) SD1: inf : © (in) SD1: 1.17549e-38
srotmg / srotm Gimy S0z d.9se76 | (im) b2 14013645

© (in) SX1: nan ; © (in) SX1: nan
 (in) SY1: -inf : © (in) SY1: -1.66667 :
i (in) SPARAM: @ 6 0 @ O : : (in) SPARAM: ©@ 6 0 @ O :

Generate and apply a
modified Givens rotation,

res pectively Reference BLAS BLIS OpenBLAS

GNU default

w/-03

EXCVATE found multiple w/ ffast-math

different exception-handling i

Intel default

failures necessitating clearer Wi 03

documentation and even w/ -03 -fp-model=fast=1

. . w/ -0O3 -fp-model=fast=2
possible deprecation

30/33

srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

© (in) SD1: inf : © (in) SD1: 1.17549e-38

© (in) SD2: -1.99976 § © (in) SD2: -1.4013e-45

© (in) SX1: nan : © (in) SX1: nan

© (in) SY1: —inf § © (in) SY1: -1.66667 _
© (in) SPARAM: 0 0 0 0 O © (in) SPARAM: 0 0 0 0 O :

Reference BLAS OpenBLAS

GNU default

w/ -O3 -ffast-math (out) SD1: ©

(out) SD2: o
Intel default (out) SX1: o

Wi -0 (out) SPARAM: -1 0 0 0 0 0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast=

30/33

srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

© (in) SD1: inf : © (in) SD1: 1.17549e-38

© (in) SD2: -1.99976 § © (in) SD2: -1.4013e-45

© (in) SX1: nan : © (in) SX1: nan

© (in) SY1: —inf § © (in) SY1: -1.66667 _
© (in) SPARAM: 0 0 0 0 O © (in) SPARAM: 0 0 0 0 O :

Reference BLAS OpenBLAS

GNU default

w/ -O3 -ffast-math (out) SD1: ©

(out) SD2: o
Intel default (out) SX1: o

Wi -0 (out) SPARAM: -1 0 0 0 0 0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast=

30/33

srotmg / srotm (i) so: inf

: (in) SD2: -1.23382e-05 :
© (in) SX1: -1.81899e-12
© (in) SY1: -2.21834e-39 :
© (in) SPARAM: 0 0 0 0 0 :

Generate and apply a SR e
modified Givens rotation,

res pectively Reference BLAS BLIS OpenBLAS

GNU default

w/-03

EXCVATE found multiple w/ ffast-math

different exception-handling i

Intel default

failures necessitating clearer Wi 03

documentation and even w/ -03 -fp-model=fast=1

. . w/ -0O3 -fp-model=fast=2
possible deprecation

31/33

srotmg / srotm (i) so: inf

: (in) SD2: -1.23382e-05 :
© (in) SX1: -1.81899%e-12
© (in) SY1: -2.21834e-39 :
© (in) SPARAM: 0 0 0 0 0

Generate and apply a SR e
modified Givens rotation,

res pectively Reference BLAS BLIS OpenBLAS

GNU default

w/-03

EXCVATE found multiple w/ ffast-math

different exception-handling i

Intel default

failures necessitating clearer Wi 03

documentation and even w/ -03 -fp-model=fast=1

) . w/ -O3 -fp-model=fast=2 NaNs in output
possible deprecation

31/33

srotmg / srotm

Generate and apply a
modified Givens rotation,
respectively

EXCVATE found multiple
different exception-handling
failures necessitating clearer
documentation and even
possible deprecation

: (in) SD1: inf :
: (in) SD2: -1.23382e-05 :
© (in) SX1: -1.81899%e-12 :
© (in) SY1: -2.21834e-39 :
: (in) SPARAM: 0 0 0 0 0 :

Reference BLAS

OpenBLAS

GNU default

w/ -O3 -ffast-math

Intel default

w/ -0

w/ -O3 -fp-model=fast=1

w/ -O3 -fp-model=fast= Undocumented Error Code NaNs in output

31/33

EXCVATE found exception
handling failures in all tuples
due to the handling of implicit
zeros in the banded matrix
representation.

Reference BLAS

BLIS

OpenBLAS

GNU default

w/-03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

w/ -03

w/ -O3 -fp-model=fast=1

w/ -0O3 -fp-model=fast=2

32/33

EXCVATE found exception
handling failures in all tuples
due to the handling of implicit
zeros in the banded matrix
representation.

© (in) TRANS: N
D (din) M: 2

© (in) N: 5

© (in) KL: ©

© (in) KU: ©

© (in) ALPHA: 1
: (in) LDA: 2

: (in) INCX: -1
 (in) BETA: 0
© (in) INCY: 1

426326 X107 0 0 0 0

 (in) A: 4.26326e-14 -1 -1

s =il =il =1l =i, =il =6 =il

(in) X: nan -1 -1 -1 0

S (din) Y: 0 -1

0

-1

0

0

0

Reference BLAS

BLIS

OpenBLAS

GNU default

w/-03

w/ -ffast-math

w/ -O3 -ffast-math

Intel default

w/ -03

w/ -O3 -fp-model=fast=1

w/ -0O3 -fp-model=fast=2

32/33

TRANS: N
M: 2
N: 5
KL: ©

sgbmv - Gn) ALpbA: 1 426326 104 0 0 0 0
© (in) LDA: 2 :

INCX: -1 0 -1 0 0 0

: BETA: 0
__ © (in) INCY: 1
Yy = aAx + 5}’ © (dn) A: 4.26326e-14 -1 -1
t-1-1-1-1-1-1-1
: (in) X: nan -1 -1 -1 0
© (in) Y: 0 -1

Reference BLAS BLIS OpenBLAS

EXCVATE found exception]
handling failures in all tuples %

w/ -0

due to the handling of implicit
zeros in the banded matrix
(out) Y¥: 0 1

.
representation.

w/ -O3 -fp-model=fast=1
w/ -O3 -fp-model=fast=2

We have...

...introduced the problem of testing exception handling
e And why current input-generation tools are a poor fit for the problem

...described a novel approach to this problem
e Targeting binary executables using exception spoofing and constraint solving

e Implemented in the prototype tool EXCVATE

...demonstrated our approach on the BLAS

e Tested across multiple implementations, compilers, compiler optimizations
e Found exception-handling failures in 5/26 functions

Source code and data available at https://qgithub.com/ucd-plse/EXCVATE

UCDAVIS

UNIVERSITY OF CALIFORNIA

We have...

...introduced the problem of testing exception handling
e And why current input-generation tools are a poor fit for the problem

...described a novel approach to this problem
e Targeting binary executables using exception spoofing and constraint solving

e Implemented in the prototype tool EXCVATE

...demonstrated our approach on the BLAS

e Tested across multiple implementations, compilers, compiler optimizations
e Found exception-handling failures in 5/26 functions

Source code and data available at https://qgithub.com/ucd-plse/EXCVATE

| am...

...looking for a job!! UC DAV'S

UNIVERSITY OF CALIFORNIA

Appendices

Approach: Take executions from the library’s regression tests

Selected :
3 . Warnings Concrete ;| Event
Regression Test Executions Inputs Traces
Executables .)
Execution Exception Input g,,'
Function Selector Spoofer Generator Ss
Prototypes P e e
L I SR
2 I B S
e -~ -
e

For each function execution:

If we do not have a matching prototype:
Skip

Construct ID for the function execution

If we have not already seen this ID:

Save the function execution

Future Work

e Improve scalability
o Reducing redundant spoofs
o Reducing redundant SMT queries

e Improve soundness
o Increasing path coverage
o Explore static methods

e Support new targets
o Multithreaded programs

o Complex-valued functions
o More ISAs: FMA, AVX-512, PTX, CDNA

