
On Stochastic Rounding with Few Random Bits

Andrew Fitzgibbon, Stephen Felix

Graphcore

ARITH 2025

Context

Memory, time, and power requirements of AI models mean moving to
narrower and narrower (8, 6, or even 4-bit) floating point formats.

Stochastic rounding improves robustness of narrow-precision
computations.

But… adds the cost of supplying random bits (rbits).

Recent work looks at supplying rbits more cheaply, or using fewer rbits.

This paper: quantity, not quality

Recent work looks at SR with few random bits, but optimal number of bits
dependent on many factors

• Accumulator precision (precision of values before rounding, e.g. p=11 for
Binary16, p=8 for BFloat16, other for specific h/w implementations

• Cost of random bits

• Accuracy requirements

Recent work [1] also looks at bias in SR with few random bits

[1]: El Arar, Fasi, Filip, Mikaitis. “Probabilistic error analysis of limited-precision stochastic rounding”, 2024

Defining SR

Real value 𝑋 is to be rounded to floating point value set
𝑚 × 2𝑒 | 𝑚 ∈ 𝕄

Where range of integer significands 𝕄 = 2𝑝 ≤ 𝑚 < 2𝑝+1, 𝑚 ∈ ℕ

Loosely, ignoring subnormals etc, we obtain real-valued significand using

𝐸 = log2 𝑋

𝑆 = 𝑋 × 2−𝐸 +𝑃−1

and round to integer ⌊𝑆⌋ or 𝑆 + 1

Defining SR

Loosely, ignoring subnormals etc, we obtain real-valued significand using

𝐸 = log2 𝑋

𝑆 = 𝑋 × 2−𝐸 +𝑃−1

and round to integer ⌊𝑆⌋ or 𝑆 + 1

Using:

High-school rounding: መ𝑆 = 𝑆 + 0.5

Stochastic rounding: መ𝑆 = 𝑆 + 𝑅 where 𝑅~Uniform 0,1

Viewed as bits

Given 𝑆 as binary real

0011011.10110101011110

We add either 0.5

.10000000000000

Or random bits

.01011101000101

Or “few” random bits

.01100000000000 “Default” implementation – biased

.01110000000000 “Quick fix” implementation – still biased

High-school rounding: መ𝑆 = 𝑆 + 0.5

Stochastic Rounding: መ𝑆 = 𝑆 + 𝑅 where 𝑅~Uniform 0,1

Viewed as bits

Given 𝑆 as binary real

 0011011.10110101011110

Add a “few” random bits

 .01100000000000 “Default” implementation – biased

 .01110000000000 “Quick fix” implementation – still biased

Or first RTNE to the number of SR bits, and add the few bits

 0011011.10110101011110

 0011011.11000000000000

 .01110000000000 “Corrected” implementation – unbiased

Our contribution

1. Identify bias in the low-r, low-p scenario ([1] did low-r only)

2. Show how to correct the bias in implementations
1. Quick and reasonably accurate

2. Slightly less quick and more accurate

3. With bias computations for all of the above

SR in practice

Concrete implementation in “gfloat” python package

Normal “round” function takes input value (and target format) only

 round(𝑆: ℝ) = 𝑆 + 0.5

Stochastic “round” function also takes random bits, an integer 0. . 2#𝑅.

 round(𝑆: ℝ, 𝑅: ℕ) = 𝑆 + 𝑅 × 2−#𝑅

SR in practice

Rounding of 𝑋 ∈ “ℝ” to 𝑌 ∈ 3.0, 3.5, 4.0, 5.0, 6.0, 7.0 ⊂ 𝔽 for a format 𝔽

Average over a few runs…

But that was 16 rbits on float64 inputs…

Rounding with 2 bits on float64 inputs

Few-bit SR, high-precision inputs

Averaged: looks like 2 rbits gives 2 precision bits on average

Few-bit SR, high-precision inputs

Averaged: looks like 2 rbits gives 2 precision bits on average

Yes, confirmed by RTNE to a format with 2 more precision bits

Few-bit SR, high-precision inputs

Averaged: looks like 2 rbits gives 2 precision bits on average

Yes, confirmed by RTNE to a format with 2 more precision bits

“High school” SR is biased

round(𝑆: ℝ, 𝑅: ℕ) = 𝑆 + 𝑅 × 2−#𝑅

Aside: how do we measure bias?

Expected value of error
Bias = 𝔼 𝑋 − round 𝑋

But what is the expectation over?

Need to pick a probability distribution 𝑝 𝑋 to write, more precisely:
Bias = 𝔼𝑋~𝑝 𝑋 𝑋 − round 𝑋

What probability distribution? It can’t be uniform on −𝑀𝐴𝑋, 𝑀𝐴𝑋 , as
then always rounding toward zero is “unbiased”.

We really want a family of test distributions, one per float-pair.

Aside: A list of bias formulae (see paper)

Writing 𝑁 = #𝑅, i.e. using 𝑁 bits of randomness

𝐵𝑖𝑎𝑠𝑆𝑅𝐹𝐹 = −2− 𝑁+1

If incoming values are finite-precision (generally true), with precision 𝐷, then

𝐵𝑖𝑎𝑠𝑆𝑅𝐹𝐹,𝐷 ≤ 2− 𝐷+1 − 2− 𝑁+1

Bound tight for 𝑁 < 𝐷, note zero for 𝑁 = 𝐷, i.e. number of rbits equal to difference in
precisions.

This is the case in preceding work (the non-few-bit case). I.e. existing hardware is fine, as it
uses a lot of rbits; any future hardware trying to save rbits will need to correct this bias.

“High school” SR is biased

round(𝑆: ℝ, 𝑅: ℕ) = 𝑆 + 𝑅 × 2−#𝑅

−2−(#𝑅+1)

Debugging: Rounding profiles

With 2 random bits, we can just treat SR as selecting from 4 deterministic
schemes:

 round 𝑆, 0𝑏00 = 𝑆 + 0.00 = 𝑆 , “Always floor”

 round 𝑆, 0𝑏01 = 𝑆 + 0.25 “Ceil if 𝛿 ≥ 3/4”

 round 𝑆, 0𝑏10 = 𝑆 + 0.50 “Ceil if 𝛿 ≥ 2/4”

 round 𝑆, 0𝑏11 = 𝑆 + 0.75 “Ceil if 𝛿 ≥ 1/4”

We can plot these…

… and see the asymmetry

Quick fix:

Move from

 round 𝑆, 𝑅 = 𝑆 + 𝑅 × 2−#𝑅

To

 round 𝑆, 𝑅 = 𝑆 + (𝑅 +
1

2
) × 2−#𝑅

Maybe call it “jam an extra 1-bit”

Fixed. So are we done yet?

Finite-precision inputs

With limited precision inputs

Bias returns if input precision before SR is close to target precision

(e.g. bfloat16, p=8 to binary8p4, precision difference is just 4)

With limited precision inputs

Bias returns if input precision before SR is close to target precision

(e.g. bfloat16, p=8 to binary8p4, precision difference is just 4)

Need an extra RTNE if

𝑝𝑑𝑒𝑠𝑡 + 𝑟 < 𝑝𝑠𝑟𝑐

Importance in practice to be explored…

Small transformer (10m
params)

Training an 8 bit model
with 16-bit gradients

Master weights in
Binary8P4

Binary8P4 SRFF: divergence

Binary8P4 RTNE: stagnation

Float16 baseline: “overfitting”

Binary8P4 SRF, SRC: “regularized”

[*] Do not over index on “overfitting” vs “regularized” – this only applies to small models.

𝑊8: 𝐹8 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒
 𝐰𝐡𝐢𝐥𝐞 …
 𝑊16 = To16 𝑊8

 𝑔 ∶ 𝐹16 = ∇𝑙𝑜𝑠𝑠 𝑊16

 𝑢 ∶ 𝐹16 = Adam update in 𝐹16
 𝑊8 = RoundTo8 𝑊16 + 𝑢

Medium scale

Binary8P4 SRFF

Float16

Binary8P4 SRF, SRC

Comparisons are more tricky – some suggestion that learning rate

should be higher for SR

Conclusions

Few-bit SR can be effective, and as more FLOPs are issued per cycle, more
SR bits are needed per cycle.

A simple implementation of bias correction can perform as well as the
“optimal” implementation.

Experiments continue… take a look at

https://github.com/graphcore-research/arith25-stochastic-rounding

https://github.com/graphcore-research/arith25-stochastic-rounding

	Slide 1: On Stochastic Rounding with Few Random Bits
	Slide 2: Context
	Slide 3: This paper: quantity, not quality
	Slide 4: Defining SR
	Slide 5: Defining SR
	Slide 6: Viewed as bits
	Slide 7: Viewed as bits
	Slide 8: Our contribution
	Slide 9: SR in practice
	Slide 10: SR in practice
	Slide 11: Average over a few runs…
	Slide 12: But that was 16 rbits on float64 inputs…
	Slide 13: Few-bit SR, high-precision inputs
	Slide 14: Few-bit SR, high-precision inputs
	Slide 15: Few-bit SR, high-precision inputs
	Slide 16: “High school” SR is biased
	Slide 17: Aside: how do we measure bias?
	Slide 18: Aside: A list of bias formulae (see paper)
	Slide 19: “High school” SR is biased
	Slide 20: Debugging: Rounding profiles
	Slide 21: Quick fix:
	Slide 23: Fixed. So are we done yet?
	Slide 24: Finite-precision inputs
	Slide 25: With limited precision inputs
	Slide 26: With limited precision inputs
	Slide 27: Importance in practice to be explored…
	Slide 28: Medium scale
	Slide 29: Conclusions

