
FastTwoSum revisited

Claude-Pierre Jeannerod and Paul Zimmermann

ARITH, May 7, 2025

FastTwoSum revisited 1/18

The FastTwoSum algorithm

x ← ◦(a + b)
z ← ◦(x − a)
y ← ◦(b − z)

A classical way to evaluate the rounding error of finite-precision additions.
The last two ops aim at producing a suitable estimate of the exact error:

y ≈ e, e := a + b − x .

Used since a long time:
[1950s] within a fixed-point library for the EDSAC [Gill’51]
[1960s] in floating-point arithmetic [Kahan’65, Møller’65]
[1970s] analysed for correctly-rounded floating-point arithmetic [Dekker’71]

and now at the heart of many higher-level algorithms: compensated algorithms,
double-word arithmetic, ...

FastTwoSum revisited 2/18

Motivation

Together with Dekker’s product, FastTwoSum is used as a building block to double the
precision:

two binary32 numbers provide about 48 bits of accuracy;
two binary64 numbers provide about 106 bits of accuracy.

Double-double arithmetic is used in many software libraries (CRlibm, routine
exact_add in LLVM libc double_double.h, routine fasttwosum in CORE-MATH).

FastTwoSum revisited 3/18

Dekker’s analysis and beyond
Theorem (Dekker’71)
If β ≤ 3, ◦ ∈ RN, ea ≥ eb, and no underflow/overflow, then y = a + b − x.

Such conditions suffice for FastTwoSum to implement an error-free transform
(EFT) for addition: x + y = a + b with x = ◦(a + b).
In practice, mostly used with β = 2, ◦ ∈ RN, and |a| ≥ |b|.
Since 1971, many extensions to larger bases, other roundings, weaker restrictions
on a and b, and underflows/overflows. [Linnainmaa’74, Virkkunen’80, Priest’91,
DaumasRideauThéry’01, RumpOgitaOishi’08, DemmelNguyen’13, GraillatJézéquelPicot’15,
BoldoGraillatMuller’17, LangeOishi’20, CorbineauZimmermann’24, ...]

Our paper reviews this literature and extends parts of it, starting from two questions:
To what extent can we relax Dekker’s conditions and still ensure x + y = a + b?
When x + y ̸= a + b, how large |x + y − (a + b)| can be?

FastTwoSum revisited 4/18

Our contributions

New sufficient conditions for e, x − a, and b − z to be FP numbers.
Five EFTs depending on the rounding mode in x ← ◦(a + b).
Examples showing when exactness is lost.
Tighter bounds on |x + y − (a + b)|.
For directed roundings, conditions ensuring that x + y is either a + b, or the
correctly-rounded value of a + b in doubled precision and the same direction.

FastTwoSum revisited 5/18

Notation, definitions, and assumptions
Floating-point number set F := {M · 2E : M, E ∈ Z, |M| < 2p}.

(base 2, precision p, and no underflow/overflow)

Roundings ◦, ◦′, ◦′′ : R→ F may differ for each of the 3 ops of FastTwoSum.
IEEE 754 roundings: RNE, RNA, RD, RU, RZ.
Faithfully rounded results: ◦(r) ∈ {RD(r), RU(r)}.
If ◦ = ◦′ = ◦′′, we write [x , y] := FastTwoSum(a, b, ◦).
For conciseness, we write ◦ ∈ FR and ◦ ∈ RN (any tie-breaking rule).

Classical tools and properties for the analysis
Unit roundoff u := 2−p.
Exponent er := ⌊log2 |r |⌋, ufp(r) := 2er , and ulp(r) := 2u · ufp(r).
For r ̸= 0, |◦ (r)− r |/ulp(r) is ≤ 1/2 if ◦ ∈ RN, and < 1 if ◦ ∈ FR.

FastTwoSum revisited 6/18

Relaxing Dekker’s conditions ◦ ∈ RN and ea ≥ eb

We relax these two conditions simultaneously:

For rounding, we consider directed roundings and even faithful rounding.
For the input, we allow for a ∈ ulp(b)Z and even |a| < |b|.

a ∈ ulp(b)Z: xxxx.xxxx
xxxx.xxxx

|a| < |b|: xxxx.xxxxxxx
xxxx.xxxx

The relaxed condition a ∈ ulp(b)Z is always true when ea ≥ eb, but also covers some
situations where ea < eb.

FastTwoSum revisited 7/18

Exactness properties

To analyze FastTwoSum, we consider three exactness properties:

(P) a + b − x ∈ F “the error is representable exactly”
(P’) x − a ∈ F “the second operation is exact”
(P”) b − z ∈ F “the third operation is exact”

Easily checked facts:

If (P’) then (P) and (P”) equivalent.
If (P’) and any of (P) and (P”) then FastTwoSum is an EFT.

Hence a simple strategy for the analysis: first give sufficient conditions for each of these
properties, and then combine them to deduce sufficient conditions for having an EFT.

FastTwoSum revisited 8/18

Sufficient conditions for exactness

Lemma (Sufficient conditions to ensure (P))
For a, b ∈ F, let a ∈ ulp(b)Z and x = ◦(a + b). If one of the conditions
(i) ◦ ∈ RN,
(ii) ◦ ∈ FR and ea − eb ≤ p,
(iii) ◦ = RD and b ≥ 0,
(iv) ◦ = RU and b ≤ 0,
(v) ◦ = RZ and ab ≥ 0
is satisfied, then the error e = a + b − x is in F.

The 4 inequalities in (ii)–(v) are needed.
(i), (ii), (v) already in the literature, but (iii) and (iv) seem to be new.

FastTwoSum revisited 9/18

Sufficient conditions for exactness

For a, b ∈ F, let x = ◦(a + b) and z = ◦′(x − a).

Lemma (Sufficient conditions to ensure (P’))
If ◦ ∈ FR and a ∈ ulp(b)Z then x − a ∈ F.

Lemma (Sufficient conditions to ensure (P”))
If ◦, ◦′ ∈ FR and ea − eb ≤ p then b − z ∈ F.

Upper bound p is needed and improves upon p − 3 from the literature.
No lower bound on ea − eb, so (P”) always holds in the reversed case |a| < |b|.

FastTwoSum revisited 10/18

Error-free transforms
By combining these lemmas, we deduce immediately 5 EFTs, depending on the
rounding mode used for the first operation x = ◦(a + b).
For example :

Theorem (EFT for rounding down)
For a, b ∈ F, let x = RD(a + b). If the conditions
(i) a ∈ ulp(b)Z,
(ii) b ≥ 0 or ea − eb ≤ p
are satisfied then x + y = a + b.

Faitfhful rounding is enough for ◦′ and ◦′′ (last two ops of FastTwoSum).
x + y ̸= a + b is possible when (i) or (ii) not true.
Similar theorems for ◦ ∈ {RN, RU, RZ, FR}.

FastTwoSum revisited 11/18

Tight bounds on |x + y − (a + b)|
When we cannot ensure an EFT, how far can x + y be from a + b?

Theorem (Tight error bounds when a ∈ ulp(b)Z)
For a, b ∈ F, if ◦, ◦′, ◦′′ ∈ FR and a ∈ ulp(b)Z then

|x + y − (a + b)| ≤ 2u2ufp(a + b) ≤ 2u2ufp(x)

and these bounds are asymptotically optimal.

Hence x + y very close to a + b, with bounds 2p times smaller than for x alone:

|x − (a + b)| ≤ 2u ufp(a + b) ≤ 2u ufp(x).

Asymptotic optimality: for (a, b) = (1 + 2u,−u3) and RD, it can be checked that
|x + y − (a + b)| = 2u2 − u3, which is equivalent to 2u2ufp(x) as u → 0.

FastTwoSum revisited 12/18

Tight bounds on |x + y − (a + b)|
If |a| < |b| instead of a ∈ ulp(b)Z, things can be much worse [CorbineauZimmermann’24]:

For RN, |x + y − (a + b)| ≤ u|x | and this bound is attained: x + y is a priori not
a better approximation than x alone.
For RD, RU, RZ, this is worse: the exact sum x + y can be a poorer approximation
than x alone! This is shown by the asymptotically optimal bounds in 3u|x |
from [CorbineauZimmermann’24], which we have slightly refined for optimality:

Theorem (Optimal error bounds for directed roundings and reversed operands)
For a, b ∈ F, let [x , y] := FastTwoSum(a, b, ◦). If |a| < |b| then optimal bounds are

|x + y − (a + b)| ≤


3u

1+4u |x | if ◦ = RZ,

3u
1+2u |x | if ◦ ∈ {RD, RU}.

FastTwoSum revisited 13/18

Correctly-rounded results in doubled precision

For ◦, ◦′, ◦′′ ∈ FR and a ∈ ulp(b)Z, we have seen that

|x + y − (a + b)| ≤ 2u2ufp(a + b),

which is the bound we would have if a + b were rounded correctly in precision 2p.

For directed roundings and a ∈ ulp(b)Z, it turns out that FastTwoSum always yields

either a + b exactly,
or such correctly-rounded values in precision 2p.

FastTwoSum revisited 14/18

Correctly-rounded results in doubled precision

Theorem (EFT or doubled-precision CR result for rounding down)
For a, b ∈ F, let [x , y] = FastTwoSum(a, b, RD). If a ∈ ulp(b)Z then

x + y =
{

a + b if b ≥ 0 or ea − eb ≤ p,
RD2p(a + b) otherwise.

If a ̸∈ ulp(b)Z then it can happen that x + y ̸∈ {a + b, RD2p(a + b)}.
Similar theorems for RU and RZ.

FastTwoSum revisited 15/18

Correctly-rounded results in doubled precision

Corollary (Interval obtained when running FastTwoSum with RD and RU)
For a, b ∈ F, let

[x , y] := FastTwoSum(a, b, RD) and [x , y] := FastTwoSum(a, b, RU).

If a ∈ ulp(b)Z then

[
x + y , x + y

]
=


[
a + b, RU2p(a + b)

]
if b ≥ 0,[

RD2p(a + b), a + b
]

if b < 0.

The interval [x + y , x + y] can thus take only two very specific forms.
BEWARE: can fail for some variants of FastTwoSum.

FastTwoSum revisited 16/18

Variants

The FastTwoSum scheme we have analyzed corresponds to the parenthesization

x + (b − (x − a)),

but variants are sometimes considered:

[V1] x + (b + (a − x)),
[V2] x − ((x − a)− b).

With directed roundings (which are not anti-symmetric), these variants can behave
very differently even if a ∈ ulp(b)Z: for example, for RD,

with V1, x + y is still either a + b or RD2p(a + b).
This is not true anymore for V2.

FastTwoSum revisited 17/18

Conclusion

Results obtained so far

New sufficient conditions for exactness that make it easy to deduce new EFTs
Asymptotically optimal error bounds when a ∈ ulp(b)Z and faithful rounding
Optimal error bounds when |a| < |b| and directed roundings
Further insight into the interval [x + y , x + y] with RD/RU

On-going work

Analysis of TwoSum beyond rounding to nearest
Larger bases and underflow/overflow

FastTwoSum revisited 18/18

