
Arithmetic questions in Fully
Homomorphic Encryption

Anamaria Costache
ARITH 2025

Introduction

Fully Homomorphic Encryption

• Allows to compute on encrypted data in a way that matches the computation on the
underlying plaintext

𝑓 𝐸𝑛𝑐 𝑚 = 𝐸𝑛𝑐(𝑓 𝑚)

• Proposed as a concept in ‘78, first construction in ‘09

On data banks and privacy homomorphisms. RL Rivest, L Adleman, ML Dertouzos. Foundations of Secure Computation 1978.
Fully homomorphic encryption using ideal lattices. Craig Gentry. ACM symposium on Theory of computing, 2009

Applications

Countless applications, most easily
illustrated with outsourcing computation

Can use FHE to construct many complex
privacy-preserving protocols

Secure voting
Private Set Intersection
Private Information Retrieval

Secure medical computations/ analytics
Secure biometric identification/ verification
…

𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝜆

𝑐𝑡 ← 𝐸𝑛𝑐(𝑚, 𝑝𝑘)

(𝑐𝑡, 𝑓, 𝑝𝑘)

𝑐𝑡′ ← 𝑓 𝑐𝑡, 𝑝𝑘 = 𝐸𝑛𝑐(𝑓 𝑚 , 𝑝𝑘)

𝑐𝑡′

𝑓 𝑚 ← 𝐷𝑒𝑐(𝑐𝑡′, 𝑠𝑘)

Privacy-preserving Machine Learning

FHE is particularly well-suited
to Privacy-Preserving Machine

Learning applications

Enables a client (making the
query) to keep their data

private

Can also enable the server to
hide their model

Many challenges here: more
on this later!

Terminology

Partial
homomorphic

encryption

Can support one
of additions or
multiplications

Somewhat
homomorphic

encryption

Can support
both, but a

limited number

Fully
homomorphic

encryption

Unlimited
number of
operations

Technical Introduction

Learning with Errors

Definition (Learning with Errors): Let 𝑞 be a positive integer, let 𝑛 be a dimension and
an error distribution 𝜒. For a secret 𝑠 ∈ ℤ𝑞

𝑛 , the LWE distribution outputs pairs of the
form

𝑎𝑖 , 𝑏𝑖 = 𝑎𝑖 , 𝑏𝑖 = < 𝑎𝑖 , 𝑠 > + 𝑒𝑖 ∈ ℤ𝑞
𝑛 × ℤ𝑞,

where 𝑒𝑖 are sampled according to 𝜒 and 𝑎𝑖 ∈ ℤ𝑞
𝑛 are sampled uniformly at random,.

• The LWE decision problem is: given pairs of the form 𝑎𝑖 , 𝑏𝑖 , decide if they were
sampled according to the LWE distribution or uniformly at random.
• The LWE search problem is: given pairs 𝑎𝑖 , 𝑏𝑖 , recover the secret 𝑠.
• We will use the Ring-Learning with Errors version of this problem, where ℤ𝑞

𝑛 is
replaced by a polynomial ring

On lattices, learning with errors, random linear codes and cryptography. Oded Regev. Journal of the ACM 2009.

Noise in FHE

Two paradigms for handling noise

Bootstrapping
• Decrypting removes all noise
• But that would reveal the

message
• Perform decryption function

homomorphically, reduce the
noise

Levelled schemes

• “Layer” the ciphertext space into levels

• After each multiplication, divide and round

• Controls the noise growth

𝑞ℓ

…

𝑞0

Four
generations of

schemes

• Gentry’s original scheme (2009)

First generation

• BGV, BFV, (NTRU)
• Good packing capabilities, slow bootstrapping, exact

computations, additions and multiplications

Second generation

• GSW, FHEW, TFHE
• Very fast bootstrapping, non-linear functions, low packing

capabilities

Third generation

• CKKS
• (very) Good packing capabilities, slow bootstrapping,

additions and multiplications

Fourth generation

Parameters (for this talk)

• We often operate on the space ℛ𝑞 = ℤ 𝑥 /(𝜙𝑛, 𝑞) where 𝜙𝑛 is the 2𝑛-th cyclotomic polynomial

𝜙𝑛 𝑥 = 𝑥𝑛 + 1,

 for 𝑛 = 2𝑘, for some 𝑘, and 𝑞 is the (Ring-)LWE modulus.

• Ciphertexts are of the form 𝑐0, 𝑐1 ∈ ℛ𝑞
2 .

• Typically, 𝑞 is chosen to be a product of ℓ primes 𝑝0, … , 𝑝ℓ−1

• We write 𝑞𝑘 = ς𝑖=0
𝑘 𝑝𝑖

• Each prime 𝑝𝑖, 𝑖 ∈ {0, … , ℓ − 1} is roughly of the same size, and is chosen such that 𝑝𝑖 ≡ 1 𝑚𝑜𝑑 2𝑛

• In particular, we can use the Chinese Remainder Theorem (CRT) to write the following isomorphism

ℛ𝑞ℓ−1
≅

ℤ 𝑥

𝜙𝑛, 𝑝0
× ⋯ ×

ℤ 𝑥

𝜙𝑛, 𝑝ℓ−1
.

• We are particularly interested in using the Residue Number System (RNS)

Encodings

Lower bits Upper bits Approximate

Message encoding 𝑚 + 𝑡 ∙ 𝑒 ∆ ∙ 𝑚 + 𝑒 𝑚 + 𝑒

Decryption
𝑐0 + 𝑠𝑐1 𝑞

𝑡

𝑡

𝑞
ڿ 𝑐0 + 𝑠𝑐1 𝑞 ۂ

𝑡

𝑐0 + 𝑠𝑐1 𝑞

∆ is a scaling factor, 𝑡 is the plaintext modulus, 𝑞 is the ciphertext modulus

∙ 𝑞 denotes modular reduction (centered around 0) mod 𝑞, | ∙ |𝑞, “regular” modular reduction

A ciphertext is a pair 𝑐0, 𝑐1 , under some secret key 𝑠.

Mod 𝑞 and mod 𝑡
operations do not

commute! The noise
typically needs to

remain smaller than 𝒒!

BFV operations - deep dive

BFV Encryption

• Let 𝑡 be a plaintext modulus, let 𝑞ℓ be as before. Let 𝑒, 𝑒0, 𝑒1 ← 𝜒 be noise terms sampled from the noise
distribution 𝜒, and let 𝑠 ← 𝒮 be a secret key

• Then, the public key is
𝑝0, 𝑝1 = 𝑝𝑘 = −𝑎 ∙ 𝑠 + 𝑒, 𝑎 𝑞

• We encrypt a message 𝑚 ∈ ℛ𝑡 as follows. Let 𝑣 ← 𝒮 be an ephemeral key

𝐸𝑛𝑐 𝑚, 𝑝𝑘 = ∆𝑚 + 𝑣𝑝0 + 𝑒0, 𝑣𝑝1 + 𝑒1 𝑞 = 𝑐0, 𝑐1 ∈ ℛ𝑞
2

• Addition is simple (linear)
• Coordinate-wise
• Noise growth is very small

∙ 𝑞 denotes modular reduction (centered around 0) mod 𝑞, | ∙ |𝑞, “regular” modular reduction

Multiplication – the challenges

Multiplication is a more
complex operation

A “naïve” approach
(simply multiplying the
components) leads to
unmanageable noise

growth, leading to losing
the message

Use base
decomposition instead

Multiplication I

• Multiplication is a more complex operation, and consists of two steps. Multiplying the “naïve”
way would result in unmanageable noise growth.

• Consider two ciphertexts, encrypted under the same key

𝑐𝑡 = 𝐸𝑛𝑐 𝑚0, 𝑝𝑘 = ∆𝑚0 + 𝑣 𝑝0 + 𝑒0, 𝑣𝑝1 + 𝑒1 𝑞 = 𝑐0, 𝑐1 ∈ ℛ𝑞
2

𝑐𝑡′ = 𝐸𝑛𝑐 𝑚1, 𝑝𝑘 = ∆𝑚1 + 𝑣′ 𝑝0 + 𝑒′0, 𝑣′𝑝1 + 𝑒′1 𝑞 = 𝑐′0, 𝑐′1 ∈ ℛ𝑞
2

• First step:
𝑑0, 𝑑1, 𝑑2 = 𝑐0 ∙ 𝑐′

0, 𝑐0 ∙ 𝑐1
′ + 𝑐0

′ ∙ 𝑐1, 𝑐1 ∙ 𝑐1
′

• This results in a 3-element ciphertext that decrypts under 𝒔𝟐, rather than 𝑠
𝑑0 + 𝑠 ∙ 𝑑1 + 𝑠2 ∙ 𝑑2 = ∆𝑚 + 𝐸 ,

for some noise 𝐸.

Multiplication II

• We have a 3-element ciphertext that decrypts under 𝒔𝟐, rather than 𝑠
𝑑0 + 𝑠 ∙ 𝑑1 + 𝑠2 ∙ 𝑑2 = ∆𝑚 + 𝐸 ,

for some noise 𝐸.

• We want to recover a 2-element ciphertext, that decrypts under 𝑠. A simple solution:

(𝑑0+𝑠2𝑑2, 𝑑1) decrypts as (𝑑0+𝑠2 ∙ 𝑑2) + 𝑠 ∙ 𝑑1 = ∆𝑚 + 𝐸.

• But: 𝑠2 is secret! So, we encrypt it as 𝑎′′ ∙ 𝑠 + 𝑒′ + 𝑠2, −𝑎′′ .

• Now, we can form the ciphertext

𝑑0 + 𝑑2 ∙ 𝑎′′ ∙ 𝑠 + 𝑒′′ + 𝑠2 , 𝑑1 − 𝑑2 ∙ 𝑎′′

• Can decrypt as
𝑑0 + 𝑑2 ∙ 𝑎′′ ∙ 𝑠 + 𝑑2 ∙ 𝑒′′ + 𝑑2 ∙ 𝑠2 + 𝑠 ∙ 𝑑1 − 𝑠 ∙ 𝑑2 ∙ 𝑎′′

= 𝑑0 + 𝑠 ∙ 𝑑1 + 𝑠2 ∙ 𝑑2 + 𝑑2 ∙ 𝑒′′ = ∆𝑚 + 𝐸 + 𝑑2 ∙ 𝑒′′

Remember
decryption

is 𝑐0 + 𝑠 ∙ 𝑐1!

Remember the
server

computes this
and 𝑠2 is secret!

Multiplication III

• Introduce the two following functions, which will help manage the noise growth

• Also need a relinearization key as follows (i.e. an encryption of 𝑠2)

• Finally, we compute the output ciphertext as

Credit to Florent de Dinechin and Martin Kumm for the figure!

Challenges
for

RNS

The product in the first step is
very large – would normally
require a lift to ℤ

Dividing and rounding is
incompatible with RNS (only
exact division)

Decomposition in base 𝜔
requires a positional system

(A) Solution for Decryption

• Recall that division is performed as

• This results in an approximate decryption

• Then, correct the approximation

A Full RNS Variant of FV-like Somewhat Homomorphic Encryption Schemes. Jean-Claude Bajard, Julien Eynard, Anward Hasan, Vincent Zucca. SAC 2016.

• Exact divisions are possible in RNS!

(A) Solution for Multiplication

A Full RNS Variant of FV-like Somewhat Homomorphic Encryption Schemes. Jean-Claude Bajard, Julien Eynard, Anward Hasan, Vincent Zucca. SAC 2016.

• Introduce an auxiliary base to contain the product in step 1 (which is large!) Replaces the lift to ℤ

• Use RNS instead – if 𝜔 has the same size as the moduli in 𝑞, this is a good approximation

Decomposition
base 2𝑘

• Elements in the ciphertext space are
polynomials 𝑎 ∈ ℛ𝑞

• Write 𝑎 = σ𝑖=0
𝑁 −1 𝑎𝑖𝑋𝑖

• Introduce a second variable 𝑌

• Write further 𝑎𝑖 = σ𝑗=0
𝐿−1 𝑎𝑖,𝑗2𝑗𝑘 =

 σ𝑗=0
𝐿−1 𝑎𝑖,𝑗𝑌𝑗, where 𝐿 = 𝐷/𝑘, for some

chosen precision 𝐷
• This can replace the RNS representation

Revisiting Key Decomposition Techniques in FHE: Simpler, Fast and More Generic. Mariya Georgieva
Belorgey, Sergiu Carpov, Nicolas Gama, Sandra Guasch, Dimitar Jetchev. AsiaCrypt 2024

Accelerating HE Operations from Key Decomposition Technique. Miran Kim, Dongwon Lee, Jinyeong
Seo, Yongsoo Song. Crypto 2023

An HPR variant of the FV scheme: Computationally Cheaper, Asymptotically Faster. Jean-Claude Bajard, Julien
Eynard, Paulo Martins, Leonel Sousa, Vincent Zucca. Transactions on Computers 2019.

Plaintext types

Plaintext types

Plaintext types for the different schemes
• (small) Integers for TFHE

• Polynomials in ℛ𝑡 =
ℤ 𝑥

𝑥𝑁+1,𝑡
 for BGV, BFV

• (fixed precision) vectors in ℂ𝑁/2 for CKKS (𝑁 is the degree of the ring)

One interesting optimisation question
• BGV, BFV, CKKS can only evaluate additions, multiplications, rotations
• This means that non-linear functions cannot be computed exactly (ReLu, SoftMax etc)
• How to best approximate these?

• Remember, multiplications are expensive!

This is different for TFHE!
• Can evaluate lookup tables efficiently! So can evaluate most nonlinear functions exactly and efficiently
• However, it performs best on messages of 5 bits of precision
• Cannot pack as many values as the other schemes

Data types

Integers (polynomials) are
the most natural to deal with

Fixed point requires some
care

Floating point is more
delicate

An Efficient Encrypted Floating-Point Representation Using HEAAN and TFHE, Subin Moon, Younho Lee. SCN 2020.
Simple Encrypted Arithmetic Library, Kim Laine. 2017
Fixed-point Arithmetic in SHE schemes. Anamaria Costache, Nigel P. Smart, Srinivas Vivek and Alexander Waller. SAC 2016.
TFHE gets real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic. Loris Bergerat, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila and Samuel Tap. CHES 2025.

https://dl.acm.org/doi/10.1155/2020/1250295
https://dl.acm.org/doi/10.1155/2020/1250295

Conclusion and open questions

Evolution of speed of computing

Slide from FHE: Past, Present and Future. Craig Gentry, fhe.org meetup 2024

Cryptographic-specific challenges

Verifiable computation:
FHE does not, by itself, offer any

guarantees about the correctness
of the function evaluated

Must operate in an honest-but-
curious setting, where we trust

that the server runs the operation
intended, correctly

Verifiable Computation (VC)
addresses this question exactly –

but many efficiency issues

Circuit privacy:
FHE does not, by itself, hide the

circuit to be evaluated!

Particularly relevant in Privacy-
Preserving Machine Learning

(PPML) settings, where server will
not want to release the model

Some recent work, but much
remains to be done

Scheme switching:
Some schemes have good packing

capabilities, some have very fast
operations and can handle

nonlinear operations

Would be good to have an efficient
way of efficiently switching
between different types of

schemes

Thank you for your
attention!

Special thanks to Laurent Imbert for helpful advice in preparing this talk!

• Gentry 2009: Fully Homomorphic Encryption from Ideal Lattices. Craig Gentry. ACM Symposium on Theory
of Computing 2009.

• BGV: (Levelled) Fully Homomorphic Encryption without Bootstrapping. Zvika Brakerski, Craig Gentry, Vinod
Vaikuntanathan. ACM Transactions on Computation Theory 2012.

• BFV:
• Fully Homomorphic Encryption without Modulus Switching from GapSVP. Zvika Brakerski. Crypto

2012.
• Somewhat Practical Fully Homomorphic Encryption. Junfeng Fan, Frederik Vercauteren. ePrint archive

2012.
• GSW: Homomorphic Encryption from Learning with Errors: Conceptually Simpler, Asymptotically-Faster,

Attribute-Based. Craig Gentry, Amit Sahai, Brent Waters. Crypto 2013.
• FHEW: FHEW: Bootstrapping Homomorphic Encryption in Less than a Second. Léo Ducas, Daniele

Micciancio. Eurocrypt 2014.
• TFHE: Fast Fully Homomorphic Encryption over the Torus. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva,

Malika Izabachène. Journal of Cryptography 2020.
• CKKS: Homomorphic Encryption for Arithmetic of Approximate Numbers. Jung Hee Cheon, Andrey Kim,

Miran Kim, Yonsoo Song. Asiacrypt 2017.

	Slide 1: Arithmetic questions in Fully Homomorphic Encryption
	Slide 2: Introduction
	Slide 3: Fully Homomorphic Encryption
	Slide 4: Applications
	Slide 5
	Slide 6: Privacy-preserving Machine Learning
	Slide 7: Terminology
	Slide 8: Technical Introduction
	Slide 9: Learning with Errors
	Slide 10: Noise in FHE
	Slide 11: Two paradigms for handling noise
	Slide 12: Four generations of schemes
	Slide 13: Parameters (for this talk)
	Slide 14: Encodings
	Slide 15: BFV operations - deep dive
	Slide 16: BFV Encryption
	Slide 17: Multiplication – the challenges
	Slide 18: Multiplication I
	Slide 19: Multiplication II
	Slide 20: Multiplication III
	Slide 21: Challenges for RNS
	Slide 22: (A) Solution for Decryption
	Slide 23: (A) Solution for Multiplication
	Slide 24: Decomposition base 2 k
	Slide 25: Plaintext types
	Slide 26: Plaintext types
	Slide 27: Data types
	Slide 28: Conclusion and open questions
	Slide 29: Evolution of speed of computing
	Slide 30: Cryptographic-specific challenges
	Slide 31
	Slide 32

