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Introduction



Fully Homomorphic Encryption 

• Allows to compute on encrypted data in a way that matches the computation on the 
underlying plaintext 

𝑓 𝐸𝑛𝑐 𝑚 = 𝐸𝑛𝑐(𝑓 𝑚 )

• Proposed as a concept in ‘78, first construction in ‘09

On data banks and privacy homomorphisms. RL Rivest, L Adleman, ML Dertouzos. Foundations of Secure Computation 1978.
Fully homomorphic encryption using ideal lattices. Craig Gentry. ACM symposium on Theory of computing, 2009



Applications

Countless applications, most easily 
illustrated with outsourcing computation

Can use FHE to construct many complex 
privacy-preserving protocols

Secure voting
Private Set Intersection
Private Information Retrieval

Secure medical computations/ analytics
Secure biometric identification/ verification 
…



𝑠𝑘, 𝑝𝑘 ← 𝐾𝑒𝑦𝐺𝑒𝑛 1𝜆

𝑐𝑡 ← 𝐸𝑛𝑐(𝑚, 𝑝𝑘)

(𝑐𝑡, 𝑓, 𝑝𝑘)

𝑐𝑡′ ← 𝑓 𝑐𝑡, 𝑝𝑘 = 𝐸𝑛𝑐(𝑓 𝑚 , 𝑝𝑘)

𝑐𝑡′

𝑓 𝑚 ← 𝐷𝑒𝑐(𝑐𝑡′, 𝑠𝑘)



Privacy-preserving Machine Learning

FHE is particularly well-suited 
to Privacy-Preserving Machine 

Learning applications

Enables a client (making the 
query) to keep their data 

private

Can also enable the server to 
hide their model 

Many challenges here: more 
on this later! 



Terminology

Partial 
homomorphic 

encryption

Can support one 
of additions or 
multiplications

Somewhat 
homomorphic 

encryption

Can support 
both, but a 

limited number

Fully 
homomorphic 

encryption

Unlimited 
number of 
operations



Technical Introduction



Learning with Errors

Definition (Learning with Errors): Let 𝑞 be a positive integer, let 𝑛 be a dimension and 
an error distribution 𝜒. For a secret 𝑠 ∈ ℤ𝑞

𝑛 , the LWE distribution outputs pairs of the 
form

𝑎𝑖 , 𝑏𝑖 = 𝑎𝑖 , 𝑏𝑖 = < 𝑎𝑖 , 𝑠 >  + 𝑒𝑖 ∈ ℤ𝑞
𝑛 × ℤ𝑞,

where 𝑒𝑖  are sampled according to 𝜒 and 𝑎𝑖 ∈ ℤ𝑞
𝑛  are sampled uniformly at random,. 

• The LWE decision problem is: given pairs of the form 𝑎𝑖 , 𝑏𝑖 , decide if they were 
sampled according to the LWE distribution or uniformly at random.
• The LWE search problem is: given pairs 𝑎𝑖 , 𝑏𝑖 , recover the secret 𝑠.
• We will use the Ring-Learning with Errors version of this problem, where ℤ𝑞

𝑛  is 
replaced by a polynomial ring

On lattices, learning with errors, random linear codes and cryptography. Oded Regev. Journal of the ACM 2009.



Noise in FHE



Two paradigms for handling noise

Bootstrapping
• Decrypting removes all noise 
• But that would reveal the 

message
• Perform decryption function 

homomorphically, reduce the 
noise 

Levelled schemes

• “Layer” the ciphertext space into levels

• After each multiplication, divide and round 

• Controls the noise growth

𝑞ℓ

… 

𝑞0



Four 
generations of 

schemes

• Gentry’s original scheme (2009) 

First generation

• BGV, BFV, (NTRU)
• Good packing capabilities, slow bootstrapping, exact 

computations, additions and multiplications

Second generation

• GSW, FHEW, TFHE
• Very fast bootstrapping, non-linear functions, low packing 

capabilities

Third generation

• CKKS
• (very) Good packing capabilities, slow bootstrapping, 

additions and multiplications

Fourth generation



Parameters (for this talk)

• We often operate on the space  ℛ𝑞 =  ℤ 𝑥 /(𝜙𝑛, 𝑞) where 𝜙𝑛 is the 2𝑛-th cyclotomic polynomial

𝜙𝑛 𝑥 = 𝑥𝑛 + 1,

      for 𝑛 = 2𝑘, for some 𝑘, and 𝑞 is the (Ring-)LWE modulus. 

• Ciphertexts are of the form 𝑐0, 𝑐1 ∈ ℛ𝑞
2 . 

• Typically, 𝑞 is chosen to be a product of ℓ primes 𝑝0, … , 𝑝ℓ−1

• We write 𝑞𝑘 =  ς𝑖=0
𝑘 𝑝𝑖

• Each prime 𝑝𝑖, 𝑖 ∈ {0, … , ℓ − 1} is roughly of the same size, and is chosen such that 𝑝𝑖 ≡ 1 𝑚𝑜𝑑 2𝑛

• In particular, we can use the Chinese Remainder Theorem (CRT) to write the following isomorphism 

ℛ𝑞ℓ−1 
≅

ℤ 𝑥

𝜙𝑛, 𝑝0
× ⋯ ×

ℤ 𝑥

𝜙𝑛, 𝑝ℓ−1
.

• We are particularly interested in using the Residue Number System (RNS) 



Encodings

Lower bits Upper bits Approximate

Message encoding 𝑚 + 𝑡 ∙ 𝑒 ∆ ∙ 𝑚 + 𝑒 𝑚 + 𝑒 

Decryption
𝑐0 + 𝑠𝑐1 𝑞

𝑡

𝑡

𝑞
ڿ 𝑐0 + 𝑠𝑐1 𝑞 ۂ

𝑡

𝑐0 + 𝑠𝑐1 𝑞

∆ is a scaling factor, 𝑡 is the plaintext modulus, 𝑞 is the ciphertext modulus

∙ 𝑞 denotes modular reduction (centered around 0) mod 𝑞, | ∙ |𝑞, “regular” modular reduction

A ciphertext is a pair 𝑐0, 𝑐1 , under some secret key 𝑠.

Mod 𝑞 and mod 𝑡 
operations do not 

commute! The noise 
typically needs to 

remain smaller than 𝒒! 



BFV operations - deep dive



BFV Encryption

• Let 𝑡 be a plaintext modulus, let 𝑞ℓ be as before. Let 𝑒, 𝑒0, 𝑒1  ←  𝜒 be noise terms sampled from the noise 
distribution 𝜒, and let 𝑠 ← 𝒮 be a secret key

• Then, the public key is 
𝑝0, 𝑝1 =  𝑝𝑘 = −𝑎 ∙ 𝑠 + 𝑒, 𝑎 𝑞  

• We encrypt a message 𝑚 ∈  ℛ𝑡 as follows. Let 𝑣 ← 𝒮 be an ephemeral key 

𝐸𝑛𝑐 𝑚, 𝑝𝑘 = ∆𝑚 + 𝑣𝑝0 + 𝑒0, 𝑣𝑝1 + 𝑒1 𝑞 = 𝑐0, 𝑐1 ∈ ℛ𝑞
2

• Addition is simple (linear)
• Coordinate-wise
• Noise growth is very small 

∙ 𝑞 denotes modular reduction (centered around 0) mod 𝑞, | ∙ |𝑞, “regular” modular reduction



Multiplication – the challenges

Multiplication is a more 
complex operation

A “naïve” approach 
(simply multiplying the 
components) leads to 
unmanageable noise 

growth, leading to losing 
the message

Use base 
decomposition instead



Multiplication I 

• Multiplication is a more complex operation, and consists of two steps. Multiplying the “naïve” 
way would result in unmanageable noise growth.

• Consider two ciphertexts, encrypted under the same key 

𝑐𝑡 =  𝐸𝑛𝑐 𝑚0, 𝑝𝑘 = ∆𝑚0 + 𝑣 𝑝0 + 𝑒0, 𝑣𝑝1 + 𝑒1 𝑞 = 𝑐0, 𝑐1 ∈ ℛ𝑞
2

𝑐𝑡′ = 𝐸𝑛𝑐 𝑚1, 𝑝𝑘 = ∆𝑚1 + 𝑣′ 𝑝0 + 𝑒′0, 𝑣′𝑝1 + 𝑒′1 𝑞 = 𝑐′0, 𝑐′1 ∈ ℛ𝑞
2

• First step: 
𝑑0, 𝑑1, 𝑑2 = 𝑐0 ∙ 𝑐′

0, 𝑐0 ∙ 𝑐1
′ + 𝑐0

′ ∙ 𝑐1, 𝑐1 ∙ 𝑐1
′

• This results in a 3-element ciphertext that decrypts under 𝒔𝟐, rather than 𝑠
𝑑0 + 𝑠 ∙ 𝑑1 + 𝑠2 ∙ 𝑑2 =  ∆𝑚 + 𝐸 ,

for some noise 𝐸. 



Multiplication II 

• We have a 3-element ciphertext that decrypts under 𝒔𝟐, rather than 𝑠
𝑑0 + 𝑠 ∙ 𝑑1 + 𝑠2 ∙ 𝑑2 =  ∆𝑚 + 𝐸 ,

for some noise 𝐸. 

• We want to recover a 2-element ciphertext, that decrypts under 𝑠. A simple solution:

(𝑑0+𝑠2𝑑2, 𝑑1) decrypts as (𝑑0+𝑠2 ∙ 𝑑2) +  𝑠 ∙ 𝑑1 =  ∆𝑚 + 𝐸.

• But: 𝑠2 is secret! So, we encrypt it as 𝑎′′ ∙ 𝑠 + 𝑒′ + 𝑠2, −𝑎′′ .

• Now, we can form the ciphertext

𝑑0 + 𝑑2 ∙ 𝑎′′ ∙ 𝑠 + 𝑒′′ + 𝑠2 , 𝑑1 − 𝑑2 ∙ 𝑎′′

• Can decrypt as 
𝑑0 + 𝑑2 ∙ 𝑎′′ ∙ 𝑠 + 𝑑2 ∙ 𝑒′′ + 𝑑2 ∙ 𝑠2 + 𝑠 ∙ 𝑑1 − 𝑠 ∙ 𝑑2 ∙ 𝑎′′ 

= 𝑑0 + 𝑠 ∙ 𝑑1 + 𝑠2 ∙ 𝑑2 + 𝑑2 ∙ 𝑒′′ =  ∆𝑚 + 𝐸 + 𝑑2 ∙ 𝑒′′

Remember 
decryption 

is 𝑐0 +  𝑠 ∙ 𝑐1!

Remember the 
server 

computes this 
and 𝑠2 is secret!



Multiplication III

• Introduce the two following functions, which will help manage the noise growth

• Also need a relinearization key as follows (i.e. an encryption of 𝑠2)

• Finally, we compute the output ciphertext as

Credit to Florent de Dinechin and Martin Kumm for the figure! 



Challenges
for 

RNS

The product in the first step is 
very large – would normally 
require a lift to ℤ

Dividing and rounding is 
incompatible with RNS (only 
exact division)

Decomposition in base 𝜔 
requires a positional system



(A) Solution for Decryption

• Recall that division is performed as

• This results in an approximate decryption

• Then, correct the approximation

A Full RNS Variant of FV-like Somewhat Homomorphic Encryption Schemes. Jean-Claude Bajard, Julien Eynard, Anward Hasan, Vincent Zucca. SAC 2016.

•  Exact divisions are possible in RNS! 



(A) Solution for Multiplication

A Full RNS Variant of FV-like Somewhat Homomorphic Encryption Schemes. Jean-Claude Bajard, Julien Eynard, Anward Hasan, Vincent Zucca. SAC 2016.

• Introduce an auxiliary base to contain the product in step 1 (which is large!) Replaces the lift to ℤ 

• Use RNS instead – if 𝜔 has the same size as the moduli in 𝑞, this is a good approximation



Decomposition 
base 2𝑘

• Elements in the ciphertext space are 
polynomials 𝑎 ∈  ℛ𝑞

• Write 𝑎 =  σ𝑖=0
𝑁 −1 𝑎𝑖𝑋𝑖

• Introduce a second variable 𝑌 

• Write further 𝑎𝑖 =  σ𝑗=0
𝐿−1 𝑎𝑖,𝑗2𝑗𝑘 =

 σ𝑗=0
𝐿−1 𝑎𝑖,𝑗𝑌𝑗, where 𝐿 = 𝐷/𝑘, for some 

chosen precision 𝐷
• This can replace the RNS representation

Revisiting Key Decomposition Techniques in FHE: Simpler, Fast and More Generic. Mariya Georgieva 
Belorgey, Sergiu Carpov, Nicolas Gama, Sandra Guasch, Dimitar Jetchev. AsiaCrypt 2024

Accelerating HE Operations from Key Decomposition Technique. Miran Kim, Dongwon Lee, Jinyeong 
Seo, Yongsoo Song. Crypto 2023

An HPR variant of the FV scheme: Computationally Cheaper, Asymptotically Faster. Jean-Claude Bajard, Julien 
Eynard, Paulo Martins, Leonel Sousa, Vincent Zucca. Transactions on Computers 2019.



Plaintext types



Plaintext types

Plaintext types for the different schemes
• (small) Integers for TFHE 

• Polynomials in ℛ𝑡 =
ℤ 𝑥

𝑥𝑁+1,𝑡
 for BGV, BFV

• (fixed precision) vectors in ℂ𝑁/2 for CKKS (𝑁 is the degree of the ring) 

One interesting optimisation question
• BGV, BFV, CKKS can only evaluate additions, multiplications, rotations
• This means that non-linear functions cannot be computed exactly (ReLu, SoftMax etc)
• How to best approximate these?

• Remember, multiplications are expensive!

This is different for TFHE! 
• Can evaluate lookup tables efficiently! So can evaluate most nonlinear functions exactly and efficiently
• However, it performs best on messages of 5 bits of precision
• Cannot pack as many values as the other schemes



Data types

Integers (polynomials) are 
the most natural to deal with

Fixed point requires some 
care

Floating  point is more 
delicate

An Efficient Encrypted Floating-Point Representation Using HEAAN and TFHE, Subin Moon, Younho Lee. SCN 2020.
Simple Encrypted Arithmetic Library, Kim Laine. 2017
Fixed-point Arithmetic in SHE schemes. Anamaria Costache, Nigel P. Smart, Srinivas Vivek and Alexander Waller. SAC 2016.
TFHE gets real: an Efficient and Flexible Homomorphic Floating-Point Arithmetic. Loris Bergerat, Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila and Samuel Tap. CHES 2025.

https://dl.acm.org/doi/10.1155/2020/1250295
https://dl.acm.org/doi/10.1155/2020/1250295


Conclusion and open questions



Evolution of speed of computing 

Slide from FHE: Past, Present and Future. Craig Gentry, fhe.org meetup 2024



Cryptographic-specific challenges

Verifiable computation:
FHE does not, by itself, offer any 

guarantees about the correctness 
of the function evaluated

Must operate in an honest-but-
curious setting, where we trust 

that the server runs the operation 
intended, correctly

Verifiable Computation (VC) 
addresses this question exactly –

but many efficiency issues

Circuit privacy: 
FHE does not, by itself, hide the 

circuit to be evaluated! 

Particularly relevant in Privacy-
Preserving Machine Learning 

(PPML) settings, where server will 
not want to release the model 

Some recent work, but much 
remains to be done

Scheme switching: 
Some schemes have good packing 

capabilities, some have very fast 
operations and can handle 

nonlinear operations

Would be good to have an efficient 
way of efficiently switching 
between different types of 

schemes



Thank you for your 
attention! 

Special thanks to Laurent Imbert for helpful advice in preparing this talk! 



• Gentry 2009: Fully Homomorphic Encryption from Ideal Lattices. Craig Gentry. ACM Symposium on Theory 
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• BGV: (Levelled) Fully Homomorphic Encryption without Bootstrapping. Zvika Brakerski, Craig Gentry, Vinod 
Vaikuntanathan. ACM Transactions on Computation Theory 2012. 
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• Fully Homomorphic Encryption without Modulus Switching from GapSVP. Zvika Brakerski. Crypto 

2012.
• Somewhat Practical Fully Homomorphic Encryption. Junfeng Fan, Frederik Vercauteren. ePrint archive 

2012.
• GSW: Homomorphic Encryption from Learning with Errors: Conceptually Simpler, Asymptotically-Faster, 

Attribute-Based. Craig Gentry, Amit Sahai, Brent Waters. Crypto 2013. 
• FHEW: FHEW: Bootstrapping Homomorphic Encryption in Less than a Second. Léo Ducas, Daniele 

Micciancio. Eurocrypt 2014. 
• TFHE: Fast Fully Homomorphic Encryption over the Torus. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, 

Malika Izabachène. Journal of Cryptography 2020.
• CKKS: Homomorphic Encryption for Arithmetic of Approximate Numbers. Jung Hee Cheon, Andrey Kim, 

Miran Kim, Yonsoo Song. Asiacrypt 2017.
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