Florent de Dinechin ARITH 2025

Martin Kumm
Application-Specific Arithmetic|

Application-Specific Florent de Dinechin
Arithmetic Martin Kumm

Computing Just Right

for the Reconfigurable Computer Anti-introduction: traditional arithmetic
and the Dark Silicon Era

Opportunities of application-specific arithmetic
Conclusion

cif INSA

& Springe: Hochschule Fulda
University of Applied Sciences

TITL =
DESSCENCES g e o7 mothimetiaues UNIV=RSITE D= LYON

INSTITUT NATIONAL .,
s 2L
LYON




Anti-introduction:
traditional arithmetic

Anti-introduction: traditional arithmetic

F. de Dinechin & M. Kumm Application-specific arithmetic



General-Purpose Processors and GPUs

The good arithmetic in a general-purpose processor is the most generally useful:
additions, multiplications, and then?

@ Should a processor include a divider? A square root?

=X

Should a processor include elementary functions (exp, log, sine/cosine)? Which?
Should a processor include decimal hardware?
Should a processor include a multiplier modulo 33297

Should a processor include an 8-bit tensor multiplier?

® © 6 o o

F. de Dinechin & M. Kumm Application-specific arithmetic



Example: Should a processor include a divider?

Answer in 1993 is : YES (Oberman & Flynn, 1993)
. and it should be fast:
Dura Amdahl lex, sed lex

Although division is not frequent, a high-latency
divider can ruin your average performance

F. de Dinechin & M. Kumm Application-specific arithmetic



Example: Should a processor include a divider?

Answer in 1993 is : YES (Oberman & Flynn, 1993)
. and it should be fast:
Dura Amdahl lex, sed lex

Although division is not frequent, a high-latency
divider can ruin your average performance

A lot of ARITH research on division

o digit recurrence algorithms
(worth one full book)

F. de Dinechin & M. Kumm Application-specific arithmetic

DIVISION
AND
SQUARE ROOT

Digit-Recurrence
Algorithms and
Implementations

MILOS D. ERCEGOVAC
TOMAS LANG

KLUWER ACADEMIC PUBLISHERS



Example: Should a processor include a divider?

Computer Arithmetic

ALGORITHMS AND HARDWARE DESIGNS

Answer in 1993 is : YES (Oberman & Flynn, 1993)
.. and it should be fast:

Dura Amdahl lex, sed lex

Although division is not frequent, a high-latency
divider can ruin your average performance

A lot of ARITH research on division
o digit recurrence algorithms
(worth one full book)

o multiplicative algorithms
(a chapter in each of the standard textbooks)

Behrooz Parhami

F. de Dinechin & M. Kumm Application-specific arithmetic



Example: Should a processor include a divider?

opyTigion Mater 2l
Miloi ERCEGOVAC | Tomds LANG

Answer in 1993 is : YES (Oberman & Flynn, 1993)
. and it should be fast:
Dura Amdahl lex, sed lex

Although division is not frequent, a high-latency
divider can ruin your average performance

A lot of ARITH research on division

o digit recurrence algorithms
(worth one full book)

o multiplicative algorithms
(a chapter in each of the standard textbooks)

F. de Dinechin & M. Kumm Application-specific arithmetic



Example: Should a processor include a divider? |

Computer
Answer in 1993 is : YES (Oberman & Flynn, 1993) Arithmetic

.. and it should be fast:
Dura Amdahl lex, sed lex

Although division is not frequent, a high-latency
divider can ruin your average performance

A lot of ARITH research on division

o digit recurrence algorithms
(worth one full book)

o multiplicative algorithms
(a chapter in each of the standard textbooks)

F. de Dinechin & M. Kumm Application-specific arithmetic



Should a processor include a divider? (2) |

Answer in 2000 is : NO (Markstein)
Instead of a hardware divider,

a second FMA (fused multiply and add) is more generally useful!
BLAS, FFTs, etc. 2x faster...

Two FMAs enable efficient divisions in software \

Scientific Computing for I -
Itanium™-based Systems

@ several algorithms to choose from

Newton-Raphson
Goldschimdt
Quadratic series expansion

AND ELEMENTARY FUNCTIONS

© ©6 o o

@ the freedom of software:

o quick and dirty, or accurate but slow
o high throughput or short latency
o ...

@ and two more books

F. de Dinechin & M. Kumm Application-specific arithmetic



Should a processor include a divider? (3)

Answer in 2018 is : YES again (Bruguera, Arith 2018)

F. de Dinechin & M. Kumm Application-specific arithmetic



Should a processor include a divider? (3)

Answer in 2018 is : YES again (Bruguera, Arith 2018)

@ a double-precision divider in 11 cycles for ARM processors
@ thanks to a totally wasteful implementation

o hardware: 20 fast 58-bit adders, 12 58-bit muxes, tables, and more ...
o hardware speculation all over the place:
compute many options in parallel, then discard them all except one

@ in a processor that is supposed to go in your smartphone?!?

F. de Dinechin & M. Kumm Application-specific arithmetic



Should a processor include a divider? (3) )

Answer in 2018 is : YES again (Bruguera, Arith 2018)
@ a double-precision divider in 11 cycles for ARM processors

@ thanks to a totally wasteful implementation

o hardware: 20 fast 58-bit adders, 12 58-bit muxes, tables, and more ...
o hardware speculation all over the place:
compute many options in parallel, then discard them all except one

@ in a processor that is supposed to go in your smartphone?!?

We do this to reduce overal energy consumption!
There is this huge superscalar ARM core that consumes a lot,
we save energy if we can switch it off a few cycles earlier

F. de Dinechin & M. Kumm Application-specific arithmetic



A good example of dark silicon made useful

Dark silicon?

In current tech, you can no longer
use 100% of the transistors 100% of the time
without destroying your chip.

We just can't dissipate the heat, and it gets worse with Moore's Law.
“Dark silicon” is the percentage that must be off at a given time

45 nm 32 nm 22 nm 16 nm 11 nm

(picture from a 2013 HiPEAC keynote by Doug Burger)

Dark Silicon

F. de Dinechin & M. Kumm Application-specific arithmetic



Pleasant times to be an architect

One way out the dark silicon apocalypse (M.B. Taylor, 2012)
Hardware implementations of rare (but useful) operations:

@ when used, dramatically reduce the energy per operation
(compared to a software implementation that would take many more cycles)

@ when unused (i.e. most of the time), serve as radiator for the parts in use

F. de Dinechin & M. Kumm Application-specific arithmetic



- J

One way out the dark silicon apocalypse (M.B. Taylor, 2012)
Hardware implementations of rare (but useful) operations:
@ when used, dramatically reduce the energy per operation
(compared to a software implementation that would take many more cycles)
@ when unused (i.e. most of the time), serve as radiator for the parts in use

Computing Just Right
for the Reconfigurable Computer
and the Dark Silicon Era

v

F. de Dinechin & M. Kumm

Application-specific arithmetic



Should a processor include elementary functions? (1)

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

Models Instruction Distribution

Add | Mult. | Div. | Sqrt. | Exp. | Log
bt 22 30 17 0 2 0
diode 7 5 4 0 1 2
hbt 112 57 51 0 23 18
jfet 13 31 2 0 2 0
mos1 24 36 7 1 0 0
vbic 36 43 18 1 10 4

F. de Dinechin & M. Kumm Application-specific arithmetic



Should a processor include elementary functions? (1)

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

Models Instruction Distribution

Add | Mult. | Div. | Sqrt. | Exp. | Log
bt 22 30 17 0 2 0
diode 7 5 4 0 1 2
hbt 112 57 51 0 23 18
jfet 13 31 2 0 2 0
mos1l 24 36 7 1 0 0
vbic 36 43 18 1 10 4

" Dura Amdahl lex, sed lex
@ add and mult: 2 to 5 cycles
@ exp or log: 10 to 100 cycles

Here the processor spends most of its time computing elementary functions

F. de Dinechin & M. Kumm Application-specific arithmetic




Should a processor include elementary functions? (2)

Answer in 1976 is YES (Paul&Wilson)
... the initial x87 floating-point coprocessor supports a basic set of elementary functions

@ implemented in microcode

@ with some hardware assistance, in particular the 80-bit floating-point format.

F. de Dinechin & M. Kumm Application-specific arithmetic

10



Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)

F. de Dinechin & M. Kumm Application-specific arithmetic

11



Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)
Table-based algorithms
@ Moore's Law means cheap memory

o Fast algorithms thanks to huge (tens of Kbytes!) tables of pre-computed values

@ Software beats micro-code, which cannot afford such tables

F. de Dinechin & M. Kumm Application-specific arithmetic

11



Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)
Table-based algorithms
@ Moore's Law means cheap memory

o Fast algorithms thanks to huge (tens of Kbytes!) tables of pre-computed values

@ Software beats micro-code, which cannot afford such tables

None of the RISC processors designed in this period
even considers elementary functions support

F. de Dinechin & M. Kumm Application-specific arithmetic

11



Should a processor include elementary functions? (4)

Answer in 2025 is... sometimes?

F. de Dinechin & M. Kumm Application-specific arithmetic

12



Should a processor include elementary functions? (4) )

Answer in 2025 is... sometimes?
@ A few low-precision hardware functions in NVidia GPUs (Oberman & Siu 2005)
@ The SpiNNaker-2 chip includes hardware exp and log (Mikaitis et al. 2018)

@ Intel AVX-512 includes all sort of fancy floating-point instructions to speed up
elementary function evaluation (Anderson et al. 2018)

@ These days, countless machine learning accelerators include ad-hoc exponential
hardware for SoftMax

F. de Dinechin & M. Kumm Application-specific arithmetic 12



| won't answer the other questions here )

v Should a processor include a divider and square root?

V' Should a processor include elementary functions (exp, log sine/cosine)?
@ Should a processor include decimal hardware?

@ Should a processor include a multiplier modulo 33297

@ Should a processor include an 8-bit tensor multiplier?

F. de Dinechin & M. Kumm Application-specific arithmetic 13



| won't answer the other questions here )

v Should a processor include a divider and square root?

V' Should a processor include elementary functions (exp, log sine/cosine)?
@ Should a processor include decimal hardware?

@ Should a processor include a multiplier modulo 33297

@ Should a processor include an 8-bit tensor multiplier?

° ..

@ Should a processor include an instruction to divide a floating-point number by 37
at least this one is clear: no, of course.

F. de Dinechin & M. Kumm Application-specific arithmetic 13



Enters the Field-Programmable Gate Arrays

1 1
| P g
FPGAs?

r— Programmable chips,
L but the programming model is the digital circuit

@ you don't develop programs, you design circuits;

T 5. @ you don't compile, you synthesize;

| [
| [
| S
|

|

|

@ you don't load a program, you configure an FPGA.

“Reconfigurable computing” means “computing with FPGAs"

(]

[

|
S
-

[

|

.l
|
i

%
[

F. de Dinechin & M. Kumm Application-specific arithmetic



One nice things with FPGAs |

There is a simpler answer to all these questions:

Should an application running on an FPGA include a circuit for

v’ division? square root? Yes iff your application needs it
v’ elementary functions? Yes iff your application needs it
v' FFT operator? Yes iff your application needs it
v multiplier by log(2)? By sin %g? Yes iff your application needs it

F. de Dinechin & M. Kumm Application-specific arithmetic 15



One nice things with FPGAs

There is a simpler answer to all these questions:

Should an application running on an FPGA include a circuit for

v’ division? square root? Yes iff your application needs it
v’ elementary functions? Yes iff your application needs it
v' FFT operator? Yes iff your application needs it
v multiplier by log(2)? By sin %g? Yes iff your application needs it

In reconfigurable computing, useful means: useful to one application.

Application-specific arithmetic

All sorts of useful arithmetic operators that just wouldn’t make sense in a processor...

. and therefore didn't yet have a book dedicated to them.

F. de Dinechin & M. Kumm Application-specific arithmetic

15



There is a simpler answer tg

Should an application runni
v’ division? square root?
v’ elementary functions?
v FFT operator?

v multiplier by log(2)? B

In reconfigurable

Application-specific arith

All sorts of useful arithmetic

... and therefore didn't yet

F. de Dinechin & M. Kumm Application-specific arithmetic

Application-Specific
Arithmetic

Computing Just Right
for the Reconfigurable Computer
and the Dark Silicon Era

15



Conclusion so far

Application-specific arithmetic O arithmetic for CPUs or GPGPUs

F. de Dinechin & M. Kumm Application-specific arithmetic

16



Conclusion so far

Application-specific arithmetic O arithmetic for CPUs or GPGPUs
This is a qualitative question, but there is a related quantitative question:

How many bits?
In a processor, data is 8, 16, 32 or 64 bits (at best).

In an FPGA, data formats may be tightly fitted to the requirements of the application:

if you need 17 bits, compute only 17 bits

Compute as few bits as possible, but compute them correctly
o If the lower bits carry useless noise, you don't want to compute them...

@ ... and you want even less to store them, transmit them, compute on them.

F. de Dinechin & M. Kumm Application-specific arithmetic

16



Conclusion so far |

Application-specific arithmetic O arithmetic for CPUs or GPGPUs
This is a qualitative question, but there is a related quantitative question:
How many bits?

In a processor, data is 8, 16, 32 or 64 bits (at best).
In an FPGA, data formats may be tightly fitted to the requirements of the application:

if you need 17 bits, compute only 17 bits

Compute as few bits as possible, but compute them correctly

o If the lower bits carry useless noise, you don't want to compute them...

@ ... and you want even less to store them, transmit them, compute on them.

Computing just right

F. de Dinechin & M. Kumm Application-specific arithmetic 16



Applicat

This is a qualitative

How many bits?

el Application-Specific

Arithmetic

Computing Just Right
for the Reconfigurable Computer
and the Dark Silicon Era

Compute as few |
o If the lower bits

@ ... and you want

F. de Dinechin & M. Kumm Application-specific arithmetic



Enough advertising for the book

Application-specific arithmetic is also the subject of the FloPoCo software project

http://flopoco.org/
@ Open source C++
@ Input operator specifications, outputs synthesizable VHDL E -
o Generates an infinity of operators
o ... (and their test bench, because we couldn’t test them all)

@ Always with clean (IEEE754-inspired) specifications:

o An arithmetic operation is a function (in the mathematical sense) E i.
o An operator is the implementation of such a function:

’operator(x) = rounding(operation(x))‘

o so the precision of the output format defines the accuracy of the operator

Any mathematical function is of interest! We are busy until retirement.

F. de Dinechin & M. Kumm Application-specific arithmetic

17


http://flopoco.org/

Let us introduce the running example of this talk

What do P.T.P. Tang, Ch. Lauter, and G. Melquiond
have in common?

F. de Dinechin & M. Kumm Application-specific arithmetic

18



Let us introduce the running example of this tal

What do P.T.P. Tang, Ch. Lauter, and G. Melquiond

have in common?
They have worked on the floating-point exponential
(here a hardware variant of Tang's algorithm)—

F. de Dinechin & M. Kumm Application-specific arithmetic

k "

T.Fx

lnormalize-round»pack
FloPoCo FPExp

R

«
A unpack }—;

18



Let us introduce the running example of this tal

k Xiﬂp(m.m

What do P.T.P. Tang, Ch. Lauter, and G. Melquiond

have in common?
They have worked on the floating-point exponential

(here a hardware variant of Tang's algorithm)—

Computing just right

Each wire, each component is

tailored to its context with love and care.

F. de Dinechin & M. Kumm

2 logx
7y

Application-specific arithmetic

@

unpack

e

sq quldaaxai
o

ufix(wg — 2,—4)

1.Fx Jufix(0, —wr)

[ X

k=1,-wr —g)

ix(—k — 1, —wg +

normalize-round-pack
{

ifix(—2k — 1, —wy

M ~ eY Jufix(0, —wr — g)

FloPoCo FPExp

Piﬂp(wg we)
18



Conclusion of the introduction

Arithmetic in software versus hardware

@ In a processor, constraint: data is 8, 16, 32 or 64 bits (at best).

@ In a circuit, freedom: we may choose, for each variable,
how many bits are computed /stored/transmitted!

Overwhelming freedom! Help!

— the opportunities

— the challenges

F. de Dinechin & M. Kumm Application-specific arithmetic

19



Opportunities
of application-specific arithmetic

Opportunities of application-specific arithmetic

F. de Dinechin & M. Kumm Application-specific arithmetic

20



Opportunities of application-specific arithmetic

Operator parameterization
Operator specialization
Resource sharing
Operator fusion

Target-specific optimizations

o s~ wh =

Function evaluation

F. de Dinechin & M. Kumm Application-specific arithmetic

21



Opportunities of application-specific arithmetic

Operator parameterization
Operator specialization
Resource sharing

Operator fusion

Target-specific optimizations

o s~ wh =

Function evaluation

F. de Dinechin & M. Kumm Application-specific arithmetic

21



Opportunity #1: Operator (over-)parameterization

Example:

shift to fixed point

normalize-round-pack f——!

FloPoCo FPExp imw w)
R

F. de Dinechin & M. Kumm Application-specific arithmetic



Opportunity #1: Operator (over-)parameterization

Example:

. shift to fixed point

normalize-round-pack f——!

FloPoCo FPExp imw w)
R

F. de Dinechin & M. Kumm Application-specific arithmetic



11q uo11dad:

L. X Junix(U, —wrg)
' ver-)paramg

sterization

shift to fixed point

HeE

e
ot shift to )
/o8

[’I—lom | E |

S o
o

Y
o

ufix(wg — 2, —4)

ufix(wg — 2 —Wf
€.

KT’ )
H

FloPoCo FPEfp

F. de Dinechin & M. Kumm

X 1/ |Og(2) ufix(—1, —wg — g)
ufix(wg, 0)
x(—log(2)) nlegate

g\sflx( 1, —wr —g)l l sfix(—1, —wr — g)

+/

isﬁx(fl, —wr—g) 7

Al

S / J ufix(|

Application-specific arithmetic

k= 1,—wr —g)

22



L. X Junix(U, —wrg) . .
: ver-)parameéterization

shift to fixed point

ufix(wg — 2 —Wf
€.

Multipliers of all shapes and sizes

y

ufix(we, 0)

052) | [ e

l&sﬂx( 1, —wr —g) |/_* VL

+/

isfix(fl, —wr—g) 7

g X
=1 pportun
8
=B
7
= A _o _
EL-,W ufix(wg — 2, —4)
/[ | x1/log(2)
\E |E]
i
it X (=
Al

ufix(k — 1, —wgp — g
S / J ( F—g)

F. de Dinechin & M. Kumm Application-specific arithmetic

22




utix(U, —wg)

9 LX 1.1 X
=1 pportun '
iupw
jﬂ:{ npack
%EX&_> hﬂlFXF
x1/10g(2)
Nii £l B
1 :
1l
I} x(—log(2))

Multipliers of all shapes and sizes
In a double-precision exponential,
o wg =11, wg =52,
y o first multiplier 14-bits in, 12 bits out

nlsgz @ second multiplier 12-bits in, 56 bits out

lxsfix(—l,—\/ 56 | |/_*

FloPoCo FP|

£

F. de Dinechin & M. Kumm

. and truncated left and right

ver-)parameéterization )

Al

Application-specific arithmetic

Jufix(—k —1,—wr —g)

22




Over-parameterization is a Good Thing

© OK, there is a bit more work involved in designing a parametric operator
o To start with, it must be a hardware-generating program

F. de Dinechin & M. Kumm Application-specific arithmetic

23



Over-parameterization is a Good Thing

© OK, there is a bit more work involved in designing a parametric operator
o To start with, it must be a hardware-generating program

@ Direct benefit to end-users: freedom of choice

F. de Dinechin & M. Kumm Application-specific arithmetic

23



Over-parameterization is a Good Thing

© OK, there is a bit more work involved in designing a parametric operator
o To start with, it must be a hardware-generating program

@ Direct benefit to end-users: freedom of choice

@ Easy to retarget, future-proof, etc.

F. de Dinechin & M. Kumm Application-specific arithmetic

23



Over-parameterization is a Good Thing )

© OK, there is a bit more work involved in designing a parametric operator
o To start with, it must be a hardware-generating program

@ Direct benefit to end-users: freedom of choice

@ Easy to retarget, future-proof, etc.

@ It actually simplifies design of composite operators (e.g. the exponential)
o No need to take any dramatic decision in the design phase:
You don't know how many bits on this wire make sense? Keep it open as a parameter.
o Then estimate cost and accuracy as a function of the parameters

o Then find the optimal values of the parameters,
e.g. using common sense or ILP (whichever gives the best results)

F. de Dinechin & M. Kumm Application-specific arithmetic 23



Opportunities of application-specific arithmetic

Operator parameterization
Operator specialization
Resource sharing
Operator fusion

Target-specific optimizations

o s~ wh =

Function evaluation

F. de Dinechin & M. Kumm Application-specific arithmetic

24



Opportunity #2: Operator specialization

e Division by 3 (for various values of 3)
o correctly rounded floating-point division by 3 and 9 (Jacobi, etc)

o round-robin addressing with 3 banks of memory (need quotient and remainder)
o ...

F. de Dinechin & M. Kumm Application-specific arithmetic

25



Opportunity #2: Operator specialization

@ Division by 3 (for various values of 3)
o correctly rounded floating-point division by 3 and 9 (Jacobi, etc)
o round-robin addressing with 3 banks of memory (need quotient and remainder)
o ...
@ Multiplications by constants
o Integer constants, or reals such as log(2) or sin(427/256)
o Two main techniques, tens of papers
o Relevant in digital filters, linear transforms (like FFTs), etc.

F. de Dinechin & M. Kumm Application-specific arithmetic

25



Opportunity #2: Operator specialization |

e Division by 3 (for various values of 3)
o correctly rounded floating-point division by 3 and 9 (Jacobi, etc)

o round-robin addressing with 3 banks of memory (need quotient and remainder)
o ...

@ Multiplications by constants
o Integer constants, or reals such as log(2) or sin(427/256)
o Two main techniques, tens of papers
o Relevant in digital filters, linear transforms (like FFTs), etc.

@ A squarer is a multiplier specialization

x —L 3| X —> x2

F. de Dinechin & M. Kumm Application-specific arithmetic 25



Opportunity #2: Operator specialization

e Division by 3 (for various values of 3)

o correctly rounded floating-point division by 3 and 9 (Jacobi, etc)
o round-robin addressing with 3 banks of memory (need quotient and remainder)

o ...

@ Multiplications by constants

o Integer constants, or reals such as log(2) or sin(427/256)

o Two main techniques, tens of papers

o Relevant in digital filters, linear transforms (like FFTs), etc.

@ A squarer is a multiplier specialization

x — 3

X

L 2

e FP adder for positive numbers only (it saves cancellation management)

F. de Dinechin & M. Kumm Application-specific arithmetic

25



Opportunity #2: Operator specialization

Division by 3 (for various values of 3)

o correctly rounded floating-point division by 3 and 9 (Jacobi, etc)
o round-robin addressing with 3 banks of memory (need quotient and remainder)

o ...

Multiplications by constants

o Integer constants, or reals such as log(2) or sin(427/256)
o Two main techniques, tens of papers
o Relevant in digital filters, linear transforms (like FFTs), etc.

A squarer is a multiplier specialization

x — 3

X

L 2

o Stable SoftMax needs e* for x < 0 only

o ...

o ...

F. de Dinechin & M. Kumm

Application-specific arithmetic

FP adder for positive numbers only (it saves cancellation management)
Specialization of elementary functions to specific domains

25



Maybe more people will understand division by 3 than exponential? |

Dividing an hexadecimal number by 3

F2D 3

F. de Dinechin & M. Kumm Application-specific arithmetic

26



Maybe more people will understand division by 3 than exponential? |

Dividing an hexadecimal number by 3

F 2D 3
P
0 5

F. de Dinechin & M. Kumm Application-specific arithmetic



Maybe more people will understand division by 3 than exponential? |

Dividing an hexadecimal number by 3

F 2D 3
P
02 5

F. de Dinechin & M. Kumm Application-specific arithmetic



Maybe more people will understand division by 3 than exponential? |

Dividing an hexadecimal number by 3

F 2D 3
N
02 50
\ v

2

F. de Dinechin & M. Kumm Application-specific arithmetic 26



Maybe more people will understand division by 3 than exponential? |

Dividing an hexadecimal number by 3

F 2D 3
N
02 50
\ v

2D

F. de Dinechin & M. Kumm Application-specific arithmetic 26



Maybe more people will understand division by 3 than exponential? |

Dividing an hexadecimal number by 3

F 2D 3
\ T

02 50F
\ e

2D
\
0

F. de Dinechin & M. Kumm Application-specific arithmetic 26



Division by 3 should not be more complex than multiplication by 3 |

X X Xo

HEEN HEEN LT 1]
4 4 4

R; = 0 —| DivBy3 ——>{ DivBy3 ——{ DivBy3 |—=> R, = R
R, Ry

3 4 4

[T 1] LITT] LI [T
Q2 @ Qo

F. de Dinechin & M. Kumm Application-specific arithmetic 27



Division by 3 should not be more complex than multiplication by 3 )

X X Xo

HEEN HEEN LT 1]
4 4 4

R; = 0 —| DivBy3 ——>{ DivBy3 ——{ DivBy3 |—=> R, = R
R, Ry

3 4 4

[T 1] LITT] LI [T
Q2 @ Qo

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

F. de Dinechin & M. Kumm Application-specific arithmetic 27



Division by 3 should not be more complex than multiplication by 3 )

[—> ROZR

X X Xo
HEEN HEEN LT 1]
4 4 4
R; = 0 —| DivBy3 ——>{ DivBy3 |[——{ DivBy3
R, Ry
3 4 4
[T 1] LITT] LI [T
Q2 @ Qo

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

If you don't know how to compute it, then tabulate it

... here a table of 2° entries of 6 bits each.

(small enough to be called a truth table and submitted to synthesis tools)

F. de Dinechin & M. Kumm Application-specific arithmetic



Tabulation, the Swiss army knife of the lazy and the stupid )

l shift to fixed point
uo |

Being unable to trust my reasoning, | learnt by heart
the results of all the possible multiplications

(E. lonesco)

@ ... and all the possible exponentials

normalize-round-pack

FloPoCo FPExp l
R

F. de Dinechin & M. Kumm Application-specific arithmetic 28



Tabulation, the Swiss army knife of the lazy and the stupid )

l shift to fixed point
uo ix|

Being unable to trust my reasoning, | learnt by heart
the results of all the possible multiplications

(E. lonesco)

@ ... and all the possible exponentials

@ ... and all the possible values of e — Z — 1

normalize-round-pack

FloPoCo FPExp l
R

F. de Dinechin & M. Kumm Application-specific arithmetic 28



Tabulation, the Swiss army knife of the lazy and the stupid )

Being unable to trust my reasoning, | learnt by heart
the results of all the possible multiplications
(E. lonesco)

@ ... and all the possible exponentials
@ ... and all the possible values of e — Z — 1

@ ... and indeed, all the possible multiplications

normalize-round-pack

FloPoCo FPExp l
R

F. de Dinechin & M. Kumm Application-specific arithmetic 28



Tabulation, the Swiss army knife of the lazy and the stupid )

l shift to fixed point
uo ix|

normalize-round-pack

FloPoCo FPExp l
R

Being unable to trust my reasoning, | learnt by heart
the results of all the possible multiplications
(E. lonesco)

@ ... and all the possible exponentials
@ ... and all the possible values of e — Z — 1

@ ... and indeed, all the possible multiplications

F. de Dinechin & M. Kumm Application-specific arithmetic 28



Tabulation, the Swiss army knife of the lazy and the stupid )

l shift to fixed point
uo |

normalize-round-pack

FloPoCo FPExp l
R

Being unable to trust my reasoning, | learnt by heart
the results of all the possible multiplications
(E. lonesco)

@ ... and all the possible exponentials
@ ... and all the possible values of e — Z — 1

@ ... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.

F. de Dinechin & M. Kumm Application-specific arithmetic 28



Opportunities of application-specific arithmetic

Operator parameterization
Operator specialization
Resource sharing
Operator fusion

Target-specific optimizations

o s~ wh =

Function evaluation

F. de Dinechin & M. Kumm Application-specific arithmetic

29



Opportunity #3: Resource sharing

@ A squarer is smaller than a multipliers
because it shares and reuses partial products.

F. de Dinechin & M. Kumm Application-specific arithmetic

X

321
321

3
642
63

103041

30



Opportunity #3: Resource sharing

@ A squarer is smaller than a multipliers
because it shares and reuses partial products.

@ Karatsuba shares and re-uses intermediate results in large multipliers.

F. de Dinechin & M. Kumm Application-specific arithmetic

X

321
321

3
642
63

103041

30



Opportunity #3: Resource sharing

@ A squarer is smaller than a multipliers

because it shares and reuses partial products.

@ Karatsuba shares and re-uses intermediate results in large multipliers.

e Multiplication by constant(s) (yes, again)

F. de Dinechin & M. Kumm Application-specific arithmetic

X

321
321

3
642
63

103041

30



Single Constant Multiplication

Even the Pentium required a x3 constant multiplication (for higher radix float mult.)

Integer
Execution

R 5 e EREL L

second
level
Kogge-
Stone

f |kogge-
Stone
lookahead

carry-
select
adder

{ loutput
drivers

outputs

source: https://www.righto.com/2025/03/pentium-multiplier-adder-reverse-engineered.html

F. de Dinechin & M. Kumm

Application-specific arithmetic

31


https://www.righto.com/2025/03/pentium-multiplier-adder-reverse-engineered.html

Single Constant Multiplication )

T
4 “
@ Realizing constant multiplications by additions, ;(): ;():
subtractions and bit-shifts (17x) (3z)
@ Goal is to find circuit with minimum adders o
(NP-hard optimization problem) ~
@ Commonly denoted as Single Constant =\J(:85x)
Multiplication (SCM) 3
>?<
683z

F. de Dinechin & M. Kumm Application-specific arithmetic 32



Single Constant Multiplication

o Gustafsson (2002): Graphs with up to 5 adders
cover all constants up to 19 bit

o by enumeration of all the graphs

e Today: Integer Linear Programming (ILP) and
(very recent) a satisfiability (SAT) method that
scales well to larger constants (~32 bits)

F. de Dinechin & M. Kumm Application-specific arithmetic

wy @ (22) Gy (62 (3.3) (34) (1)

“2) (3) (44) (45) (46) (47)

(48) “9) (410) (5.1) (52) (53)

@é@‘%@@

(5.6) (5.7) (58)

@@@O@@

(5.9) (5.10) (511) (512) (5.13)

T o s o e,

(514) (515) (5.16) (517) (518)

o@%o@@@

(5.19) (520) (5.21) (5.22)

(5.23) (5.24) (5.25) (5.26)

e Y e SRS e — — =

(527) (5.28) (5.29) (5.30)

All graph topologies up to 5 adders

33



Multiple Constant Multiplication )

More opportunities when multiplying with several constants (constant vector x scalar):

T T
| |
X “«+1 “«+3
I » N » (N
YN - “NJ=

3 + GORNEE S P (20

>mi »(Ne—(241) » (D«

v v 7

Tz 23z 23z Tz
Optimal SCM Optimal SCM Optimal MCM

F. de Dinechin & M. Kumm Application-specific arithmetic 34



Constant Matrix Multiplication

And even more opportunities when multiplying a constant matrix with a vector:

1 €T
>« » (P
(z1 — x2) (x1 + x2)
( Y1 ) - < 43 51 X1 «3 «“«—4
yo )\ 71 87 X0 > »N<
(71 + 922) T Y1521 + 152,)
2 3

43x1 + 5lze Tlaxy + 87xo

F. de Dinechin & M. Kumm Application-specific arithmetic

35



Application-specific Multipliers

Tune the multiplicands to your application!

1
—— AlexNet
08 —— MobileNet
0.6
0.4
0.2

L | | | d L 1 1
071 -08 -06 —04 -02 0 02 04 06 08 1
Weight distribution of AlexNet and MobileNet

F. de Dinechin & M. Kumm Application-specific arithmetic

36



Application-specific Multipliers )

Tune the multiplicands to your application!

1
0.8
0.6
0.4
0.2

—— AlexNet
—— MobileNet

071 08 —06 04 02 0 02 04 06 08

Weight distribution of AlexNet and MobileNet

1

1

0.8
0.6
0.4
0.2

0

—-80 —60 —40

-20 0 20 40 60 80

Weight distribution of reconf. multiplier

F. de Dinechin & M. Kumm

Application-specific arithmetic

53525150 X

<2

SEEEE
oy
S

Y

]

Reconf. multiplier topology for the coefficients
+{0,1,2,8,28,36,44,92}

36



Opportunities of application-specific arithmetic

Operator parameterization
Operator specialization
Resource sharing
Operator fusion

Target-specific optimizations

o s~ wh =

Function evaluation

F. de Dinechin & M. Kumm Application-specific arithmetic

37



Opportunity #4: Operator fusion

3 examples among many others:

@ We just saw multiple constant multiplication.

F. de Dinechin & M. Kumm Application-specific arithmetic

38



Opportunity #4: Operator fusion

3 examples among many others:

@ We just saw multiple constant multiplication.

@ A squared norm in floating

parallel execution
no need to handle cancel

© 6 6 o o

altogether smaller, faster

F. de Dinechin & M. Kumm

point: X2 + Y? 4 Z2

FP unpack / round / pack only once

lations

symmetry respected thanks to internal fixed-point
, more accurate

than 3 FPx and 2 FP +

Application-specific arithmetic

X Y z
[ R
en unpack ]
EXIM Ev ., EZJM Mxll Fwe lel . Mle +we
L compare & sort squarer squarer squarer
El E| E
*27\‘/f+g *!7\‘/f+g iszfg
[[sub | [sub sort ]
T
i 2 ¥ ‘1‘
[ add ]
—M—l Jrvrvs
. normalize and pack |

\tl we + wr

R

38



Opportunity #4: Operator fusion

3 examples among many others:

@ We just saw multiple constant multiplication.

@ A squared norm in floating point: X2 + Y? + 7?2
FP unpack / round / pack only once

parallel execution

no need to handle cancellations

symmetry respected thanks to internal fixed-point

altogether smaller, faster, more accurate
than 3 FPx and 2 FP +

o A very generic idea: bit-level merged arithmetic

e many-term sums, products, sums of products, ...
. multi-variate polynomials
o a generic framework: the bit heap

© 6 6 o o

F. de Dinechin & M. Kumm Application-specific arithmetic

exn

X Y z
i| we +we i] we - we i\ +we +we
unpack |
Ex 1 we EY ) we Ezfwe Mx}, . we My}, . we Mz}, . we

L compare & sort

squarer

squarer

squarer

Bl fel fe | EEATE SrATE AT
[[sub | [sub sort ]
vi‘ Gl‘
—NL@ aid ]
. normalize and pack |

\tl we + wr

R

38



Merged arithmetic in bit heaps

F. de Dinechin & M. Kumm

Algorithmic description

[Multiplier] [Complex product]
Multi-adder ] ( Constant multiplier |

Application-specific arithmetic

39



Merged arithmetic in bit heaps

One data-structure to rule them all...

Algorithmic description

[Mumpﬁeﬂ (Complex product]
M} [Constant muItipIierJ

\\\i\: Vi
b2

F. de Dinechin & M. Kumm Application-specific arithmetic

39



Merged arithmetic in bit heaps )

One data-structure to rule them all... and in the hardware to bind them

Algorithmic description

[Mumpﬁeﬂ (Complex product]
W} [Constant muItipIierJ

b;2"i
e N
[ASIC tech. yyy |  eeeses

(ASIC tech. xxx FPGA xxx
Architecture generation

F. de Dinechin & M. Kumm Application-specific arithmetic 39



Weighted bits

Integers or real numbers represented in binary fixed-point

fmax
X = E 2’X,'
i=lmin

Representation as a dot diagram

weight 2I7 2I6 2|5 2I4 2I3 2|2 2|1

IO OO ORI
20

F. de Dinechin & M. Kumm Application-specific arithmetic



The historical bit heap

Xxy = (3

- ¥

i7j

F. de Dinechin & M. Kumm

Imax ) ( Jmax _/yJ)

1= Imin J=Jmin

o
2" xiy;

Application-specific arithmetic

41



The historical bit heap

1= Imin

I
= > 2y
i7.j

XxY = (Xh= 2x)x (S 2y)

weight

27
|

HENENE
HENEnE
IR

26 25 2% 23 22 ol 90
| | | | | | |

F. de Dinechin & M. Kumm Application-specific arithmetic

T

T T T T T T T

41



The historical bit heap

- oo
XY = (S 2) < (S, 2y) SITIE
Yy, SITITIS

i7.j
weight %7 %6 %5 %4 %3 %2 %1 %0

T T T T T T T T
A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps

Z2i+jx;)/j expresses the bit-level parallelism of the problem
ij

F. de Dinechin & M. Kumm Application-specific arithmetic

41



The historical bit heap

I SO
Xx Y = (S 2) x (S 2y) SISITITIT
iy DOVOOOE

i7j
weight 27 26 25 2t 23 22 ol 20
1
A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps
ZQiJrjx;)/j expresses the bit-level parallelism of the problem
ij
(freedom thanks to associativity and commutativity of addition)

F. de Dinechin & M. Kumm Application-specific arithmetic



Beyond product

XY = Z2i+jx,'yj
i

F. de Dinechin & M. Kumm Application-specific arithmetic

e
N
SO

42



Beyond product

62
e
e
DD
GHEOEEHEE@®

A+ XY = Z2ia; + Z2i+jx;yj
i iJ

9.0
®HEOO®

®

®

®

©

F. de Dinechin & M. Kumm Application-specific arithmetic



Beyond product

A+ XY = ) 2%b,,
w,h

F. de Dinechin & M. Kumm Application-specific arithmetic

62
e
e
DD
GHEOEEHEE@®

9.0
®HEOO®

®

®

®

©

42



Beyond product )

OOO®
@@

) &)
A+ XY = %2 b @@ .
EREAEAEREREIEn
EE@E@EGHE@@®E®

consider only one big sum of weighted bits

When generating an architecture

@ get rid of artificial sequentiality (inside operators, and between operators)

@ a global optimization instead of several local ones (and solved by ILP)

F. de Dinechin & M. Kumm Application-specific arithmetic

42



Computing the sum: bit heap compression

@O @
1 @OO®
@O ®

N"ieg
>
N"ig

o

F. de Dinechin & M. Kumm Application-specific arithmetic

43



Computing the sum: bit heap compression

@L

@®7
@O®®
@O@Dq
@O @
@@

@ I

43

arithmetic

cific

-spe

F. de Dinechin & M. Kumm Application



Computing the sum: bit heap compression

.
oo
CF

GG(}

GGC}
CFcr

F. de Dinechin & M. Kumm Application-specific arithmetic

43



Computing the sum: bit heap compression

F. de Dinechin & M. Kumm Application-specific arithmetic

43



Computing the sum: bit heap compression

F. de Dinechin & M. Kumm

REE

Application-specific arithmetic

X0 Yo

an U U

X3 Y3 @

U0 QR

|FA||FA||FA|
T T _TT1

U
y

43



Computing the sum: bit heap compression

F. de Dinechin & M. Kumm

REE

Application-specific arithmetic

X0 Yo

an U U

X3 Y3 @

U0 QR

|FA||FA||FA|
T T _TT1

U
y

43



Computing the sum: bit heap compression

X0 Yo

he X3 ¥1 @ @

R t%j

............ .. “ s @

« o o T e v e UUQQ
|FA||FA||FA|

F. de Dinechin & M. Kumm Application-specific arithmetic

43



Computing the sum: bit heap compression

F. de Dinechin & M. Kumm Application-specific arithmetic

43



Computing the sum: bit heap compression

e X3 Y1 @L @Xgo
-2 8808: . 0
85 y o)|y
. oL [FA| [FA||[FA]

sy

_|_||

F. de Dinechin & M. Kumm Application-specific arithmetic

43



Computing the sum: bit heap compression

X3 Y3

- N g ¢ el

e ° ° [FA| [FA|

|—'|l—'||'

GPCy 3:3

— =

F. de Dinechin & M. Kumm Application-specific arithmetic



Computing the sum: bit heap compression )

: on OO0
.

R 8

. B _______ .. o R,

o o q [FA] [Fa] [FA

................................................................... I_Il_II_I

) ) ) ) ) ) ) ) ’@ GPC273;3 [
[ o &r ?{ (

I I I I I I
S7 S S5 S4 S3 S S S0

F. de Dinechin & M. Kumm Application-specific arithmetic 43



When you have a good hammer, you see nails everywhere

A sine/cosine architecture (Istoan, HEART 2013):

‘s‘q‘o‘ A ‘ Yred

Sin/Cos table

sinPiA
cosPiA

/;

sin ASmL cosAsinZ
sinAcosZ{ cosAcosZ

Swap/negate

@ EJ

sinPiX cosPiX

F. de Dinechin & M. Kumm Application-specific arithmetic



When you have a good hammer, you see nails everywhere

A sine/cosine architecture (Istoan, HEART 2013): 5 bit heaps

‘s‘q‘o‘ A ‘ Yred ‘

Sin/Cos table

sinPiA

—-IT’E

slnAst cosAsinZ
sinAcosZ\_ cosAcosZ!

Swap/negate

@ EJ

sinPiX cosPiX

F. de Dinechin & M. Kumm Application-specific arithmetic



Bit heaps for some operators and filters |

00000000000000000
@000000C000COCO0OOOOO
900000000 0COOGOGQOIOGIOOOS

Why are some people still insisting | should call these “bit arrays”?

F. de Dinechin & M. Kumm Application-specific arithmetic 45



Opportunities of application-specific arithmetic

Operator parameterization
Operator specialization
Resource sharing
Operator fusion

Target-specific optimizations

o s~ wh =

Function evaluation

F. de Dinechin & M. Kumm Application-specific arithmetic

46



Opportunity #5: Target-specific optimizations

)

Optimizing gates does not mean that you optimize for the target technology (here: FPGASs)

abcedef

D

Ci

- Co _C—-oe 05
<
=L
\/

D = @
Wi

We should look the other way around!

F. de Dinechin & M. Kumm Application-specific arithmetic

47



Addition on FPGAs

There is so much free space in FPGA adders:

So, let’s use this space to compress more bits!

F. de Dinechin & M. Kumm Application-specific arithmetic

e —o0 o
°

48



Addition on FPGAs

There is so much free space in FPGA adders:

Zo Wo Wy w2 Vo V1 Ug U U U3 Uy
i
[ | I | —
1 v vV
FA FA

So, let’s use this space to compress more bits!

F. de Dinechin & M. Kumm Application-specific arithmetic

e —0 0o
°
°

48



ec0ecoce o oo M

ccoe o ecoee oo
=>e =

PR ° oo o0 oo

. LX)

eo e e .

eecccee o eeee oo
. I

LI e ) LI ) L]

o o ee oo

. .

eeoe o

eee o

eecece o oo o
o o =

eece=0 oo o

o o eee o

° o o

.

eee o

oo o

oo o

eee o N

ce=0

. oo o

oo o

.

ee 00 o
e o
ee0o0oo0—0
o

.

eeee o
=0

A bestiary of compressors

o
LRI
Uo o000 oe=0
.
.
.
eee o
eeo0ee o ooUo
e e LRI I Ry )
. o
°

LRI NN ey ) e _°
eee=0
°
e o
.
.

49

Application-specific arithmetic

F. de Dinechin & M. Kumm



A bestiary of compressors

LRI ]

eeo0ee o
=0

LRI NN ey )
°
.

LN ] L]
LN ] LN
=
o e oo

LN ]

L ] L]

LN ] LN ]
e

LN ] LN

LN ] LN ]

L]

o0 0 L]

o0 0 L]

o0 0 L]

=

o0 0 L]

o0 0 L]

L] L]

L]

o0 0 L]

L ] L]

LN ] L]
=

LN ] L]

L ] L]

L]

o0 0 L]

L] L]

LN R )

L]

L]

o0 0 L]

L]

o0 e0e—0

L]

L]

o0 0 L]

L ] L]

LN I )

L]

L]

o0 0 L]

LN ] L]

o0 e0e—0

L] L]

L]

Designing a compressor tree now becomes a challenge!

49

Application-specific arithmetic

F. de Dinechin & M. Kumm



A bestiary of compressors

Heuristic and ILP-based optimal methods are there!

—1C-1E-1
minimize Z Y Z Cekisec
5=0 c=0 e=
subject to
E-1C—1
Cl: N1 <Y Y Mok qpepe fors=1...5,¢=0...C—1
e=0 /=0
E-1C,—1
C2: Nsc = Z Z Keeroks—1ec4cr fors=1...5,¢=0...C-1
e=0 /=0
C3: NS,C < I

| 45995533598, .9

F. de Dinechin & M. Kumm Application-specific arithmetic



Multiplier Tiling

Instead of fixed radix-2, -4, etc. we use what the target provides (Logic and DSP)!

58
41
—FL 24
12
0
58 53 41 29 12

F. de Dinechin & M. Kumm Application-specific arithmetic



Opportunities of application-specific arithmetic

Operator parameterization
Operator specialization
Resource sharing
Operator fusion

Target-specific optimizations

o s~ wh =

Function evaluation

F. de Dinechin & M. Kumm Application-specific arithmetic

52



Opportunity #6: Function evaluation with generic approximators

)

Xiﬂu(w[ wr)

519 uondasxe

sfix(~1, —wr — g)

normalize-round-pack
|

ufix(~1, —wr — g)

< oat2)

sfix(—1, —wr — g)

ufix(—k — 1, ~wr — g)

FloPoCo FPExp

F. de Dinechin & M. Kumm

Riﬂpw, we)

ufix(—k = 1, —wg + k - g)

Polynomial Coefficient Table

el

punou |euy

The FloPoCo FixFunctionByPiecewisePoly operator

o state-of-the-art polynomial approximation

@ each multiplier tailored with love and care

Also multipartite tables, filter approximators, and more to come.

Application-specific arithmetic

53



Conclusion

F. de Dinechin & M. Kumm

Application-specific arithmetic

Conclusion

54



Lessons learnt over the past 15 years

There is arithmetic beyond the ARITH logo
For good floating-point, you also need good fixed-point
(For good posit, you also need good floating-point)

Implementing a hardware generator is even more fun than designing hardware

Martin and his disciples are quietly replacing all the heuristic tinkered by Florent
with mathematical models that capture the optimal operator

FloPoCo only solves the easy problem
DONE Good, flexible, versatile application-specific operators

TODO Now how many bits do | need for this variable in my application?

F. de Dinechin & M. Kumm Application-specific arithmetic

55



Regrettably, there still exist people who have not read all my papers |

Example of bug report by a highly valued FloPoCo user

| ./flopoco FPConstMult wE=8 wF=23 constant=0.3333 |

Can you see what is wrong here?

F. de Dinechin & M. Kumm Application-specific arithmetic

56



Regrettably, there still exist people who have not read all my papers |

Example of bug report by a highly valued FloPoCo user

| ./flopoco FPConstMult wE=8 wF=23 constant=0.3333 |

Can you see what is wrong here? ~1/3+£271* Argh! Not Computing Just Right!

F. de Dinechin & M. Kumm Application-specific arithmetic

56



Regrettably, there still exist people who have not read all my papers |

Florent de Dinechin
Martin Kumm

Example of bug report by a highly valued FloPoCo user

| ./flopoco FPConstMult wE=8 wF=23 constant=0.3333 ﬁpgai(ati‘.’"‘sl)edﬁc
_ rithmetic
Can you see what is wrong here? ~1/3+£271* Argh! Not Comp s

forthe Reconfigurable Computer
and the Dark Silicon Era

Solution 1: Did | mention that we published this book?

F. de Dinechin & M. Kumm Application-specific arithmetic 56



Regrettably, there still exist people who have not read all my papers |

Florent de Dinechin
Martin Kumm

Example of bug report by a highly valued FloPoCo user

| ./flopoco FPConstMult wE=8 wF=23 constant=0.3333 ﬁpwcati?"‘sf’edﬁc
_ rithmetic
Can you see what is wrong here? ~1/3+£271* Argh! Not Comp s

forthe Reconfigurable Computer
and the Dark Silicon Era

Solution 1: Did | mention that we published this book?

Solution?2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)
Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin & M. Kumm Application-specific arithmetic 56



Why move useless bits around?

Some of the successive advertising phrases for the FloPoCo project
@ When FPGAs are better at floating point than microprocessors
@ Not your neighbor's FPU
@ All the operators you will never see in a microprocessor
@ FPGA arithmetic the way it should be
o Circuits computing just right

o Fantastic arithmetic beasts (and how to build them)

F. de Dinechin & M. Kumm Application-specific arithmetic

57



Backup slides

F. de Dinechin & M. Kumm

Application-specific arithmetic

58



First, a math proficiency test

Three identities to remember from our happy school days
X eXIog(Z)

A+B A B

e =€ Xe

22
ezm1+2+7 if Z is small

(1)

()

(3)

F. de Dinechin & M. Kumm Application-specific arithmetic

59



|
s,
unpack }—;

1.Fx

shift to fixed point

Ex

suq uondeoxe H

< lo5@)

LY
>
LY
N
|
N
|
—-

Tirunc

I — A
normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as

eX =2F.1.F

60



|
s,
unpack }—;

1.Fx

shift to fixed point

B

suq uondeoxe H

< lo5@)

LY
>
LY
N
|
N
|
—-

Tirunc

I

normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as

eX =2F.1.F

Compute
X

log 2

~

60



|
s,
unpack }—;

1.Fx

shift to fixed point

B

suq uondeoxe H

V4

Al Ztrunc

(] [

Tirunc

I

| normalize-round-pack
FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

X

We want to obtain e* as

Compute

then

eX =2F.1.F

E =~ {)<w
log 2

Y~ X—E xlog2.

60



|

Ex T.Fx

shift to fixed point

suq uondeoxe H

Y

s,
unpack }—;

< lo5@)

V4

LY
>
LY
N
|
N
|
—-

Tirunc

I

normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as
X =2F.1F
Compute
X
E ~ {-‘
log 2
then
Y~ X—E xlog2.
Now
eX — eEIog2+Y
_ eEIogZ . eY
— oE. oY

60



"
S; .
? unpack P We want to obtain eX as

1.Fx

eX =2F . ¥

Now we have to compute e”
with Y € (—=1/2,1/2).
Y

V4

Tirunc

I

normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic



|

S; .
7 _ = e We want to obtain eX as
2 Ex -Fx
g = eX =2F . ¥

Now we have to compute e”

- with Y € (—=1/2,1/2).
: Split Y:

1k .
Y y— A ] Z |

V4
A Zirune
e e -Z-1 /e erte
S
+

[+ ] Y=A+Z with Z<2k

Tirunc

I

| normalize-round-pack
FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic 60



|

S; .
7 _ = e We want to obtain eX as
2 Ex -Fx
g 5 eX =2F.¢Y

Now we have to compute e”

- with Y € (—=1/2,1/2).
: Split Y:

1k Cwr—g
v z y=[_ A ] Z |

i.e. write

LY
>
LY
N
|
N
|
—-

Y=A+Z with Z<27k

Tirunc

SO

I — A
normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic 60



|
s,
unpack }—;

1.Fx

shift to fixed point

B

suq uondeoxe H

< lo5@)

Y z

LY
>
LY
N
|
N
|
—-

Tirunc

I — A
normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as
eX =2F . ¥
e =e? xe

Tabulate e” in a ROM

60



|
s,
unpack }—;

1.Fx

shift to fixed point

B

suq uondeoxe H

x@@)E?-%—

Y z

LY
>
LY
N
|
N
|
—-

Tirunc

I — A
normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as

eX =2F . ¥

eY:eA ><eZ

Evaluation of e4: Z <27k so

e ~1+2Z+27%2

60



|

S; .
7 _ = e We want to obtain eX as
2 Ex -Fx
g 5 eX =2F.¢Y

eY:eA ><eZ

X( og(2) Evaluation of e4: Z <27k so
Y

z e ~1+2Z+27%2
Al Zirunc
’ o ’ ’eZ—z—lf Notice that e —1 - Z ~ Z%2/2 < 272k
S

Tirunc

I — A
normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic



|

s,
j:‘ unpack }—;
% Ex 1.Fx
§‘ shift to fixed point

< lo5@)

Tirunc

I

Y z
Al Dy
IEN R EER
S

normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as

eX =2F . ¥

e’ =e? xéf
Evaluation of e4: Z <27k so
e ~1+2Z+27%2

Notice that e —1 - Z ~ Z%2/2 < 272k

Evaluate e — Z — 1 somewhow
(out of Z truncated to its higher bits only)

60



|
s,
unpack }—;

1.Fx

shift to fixed point

Ex

suq uondeoxe H

<Clog)
Y

V4

Tirunc

I

| normalize-round-pack
FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as
eX =2F . ¥

eY:eA ><eZ

Evaluation of e4: Z <27k so
e ~1+2Z+27%2

Notice that e —1 - Z ~ Z%2/2 < 272k

Evaluate e — Z — 1 somewhow

(out of Z truncated to its higher bits only)
then add Z to obtain e — 1

60



|
s,
unpack }—;

1.Fx

shift to fixed point

B

suq uondeoxe H

<Clog)
Y

V4

LY
>
LY
N
|
N
|
—-

Tirunc

I — A
normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as

Also notice that
k—1 zeroes

7 ——
e“ = 1.000...000 zzzz

Evaluate e” x €€ as

e + e x(ef-1)

60



"
S; .
? unpack P We want to obtain eX as

1.Fx

< lo5@)

Also notice that

[+~ ]
Y z
A 1 o k—1 zeroes
A Z Z P
[ o] |z e? = 1.000...000 zzzz
HS
Evaluate e” x €€ as

Tirunc

e + e x(ef-1)

(before the product, truncate e” to precision
of e — 1)

I — A
normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic



|

S; .
7 _ = e We want to obtain eX as
2 Ex -Fx
g 5 eX =2F.¢Y

IE| e’ =" xe
<Cog2)
And that's it, we have E and e
Y z
Al Ztrunc
] e
HS

Tirunc

I — A
normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic



|

B

shift to fixed point

suq uondeoxe H

Y

s,
unpack }—;

< lo5@)

V4

LY
>
LY
N
|
N
|
—-

Tirunc

I

normalize-round-pack
L

FloPoCo FPExp 1
R

F. de Dinechin & M. Kumm Application-specific arithmetic

We want to obtain eX as

And that's it, we have E and e"
(using only fixed-point computations)

60



Xiﬂp(wg we)

sx

Ex T.Fx

j:‘ unpack
2
8
2
5
]
o

sfix(~1, —wr — g)

ufix(0, —wg)

sfix(—1, —wr — g)

k=1, —we — g)

ix(—k — 1, —wr + k — g)

ufix(0, ~wg

I

normalize-round-pack
L

Lfix(—2k — 1, —wr — g)

K~ — g)

vF —g)

FloPoCo FPExp

F. de Dinechin & M. Kumm

Riﬂp(w.w)

Application-specific arithmetic

We want to obtain eX as

And that's it, we have E and e"
(using only fixed-point computations)

60



Single-precision magic

519 uondasxe

Tirunc

normalize-round-pack
|

Modern FPGAs also have

FloPoCo FPExp

F. de Dinechin & M. Kumm

il

Application-specific arithmetic

61



F. de Dinechin & M. Kumm

Single-precision magic

519 uondasxe

l shift to fixed point
I

Tirunc

normalize-round-pack
|

FloPoCo FPExp l
R

Modern FPGAs also have

@ small multipliers with pre-adders and post-adders

Application-specific arithmetic

61



Single-precision magic

Modern FPGAs also have

@ small multipliers with pre-adders and post-adders

£
8
2
H
E4
@

Tirunc

I —— 5
normalize-round-pack
L

FloPoCo FPExp I
R

F. de Dinechin & M. Kumm Application-specific arithmetic



Single-precision magic

normalize-round-pack

FloPoCo FPExp l
R

Modern FPGAs also have

@ small multipliers with pre-adders and post-adders

Single-precision accurate exponential on Xilinx
@ one block RAM (0.1% of the chip)
@ one DSP block (0.1%)
@ < 400 LUTs (0.1%, =~ one FP adder)

to compute one exponential per cycle at 500MHz
(~ one AVX512 core trashing on its 16 FP32 lanes)

F. de Dinechin & M. Kumm Application-specific arithmetic

61



Single-precision magic |

Xiﬂp(wf wr)

Modern FPGAs also have

@ small multipliers with pre-adders and post-adders
ix(we — 2, ~wr — g)

fix(~1, ~wr ~ )

Single-precision accurate exponential on Xilinx
@ one block RAM (0.1% of the chip)

" @ one DSP block (0.1%)
s @ < 400 LUTs (0.1%, ~ one FP adder)

T« | -» to compute one exponential per cycle at 500MHz
(~ one AVX512 core trashing on its 16 FP32 lanes)

sfix(—1, —wr — g)

For one specific value only of the architectural parameter k!
normalize-round-pack

. (over-parameterization is cool)
FloPoCo FPExp Riflp(wk.wp]

F. de Dinechin & M. Kumm Application-specific arithmetic

61



	Anti-introduction: traditional arithmetic
	Opportunities of application-specific arithmetic
	Operator parameterization
	Operator specialization
	Resource sharing
	Operator fusion
	Target-specific optimizations
	Function evaluation

	Conclusion

