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General-Purpose Processors and GPUs

The good arithmetic in a general-purpose processor is the most generally useful:
additions, multiplications, and then?

Should a processor include a divider? A square root?

Should a processor include elementary functions (exp, log, sine/cosine)? Which?

Should a processor include decimal hardware?

Should a processor include a multiplier modulo 3329?

Should a processor include an 8-bit tensor multiplier?

...
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Example: Should a processor include a divider?

Answer in 1993 is : YES (Oberman & Flynn, 1993)
... and it should be fast:

Dura Amdahl lex, sed lex

Although division is not frequent, a high-latency
divider can ruin your average performance

A lot of ARITH research on division

digit recurrence algorithms
(worth one full book)

multiplicative algorithms
(a chapter in each of the standard textbooks)
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Should a processor include a divider? (2)

Answer in 2000 is : NO (Markstein)
Instead of a hardware divider,

a second FMA (fused multiply and add) is more generally useful!
BLAS, FFTs, etc. 2x faster...

Two FMAs enable efficient divisions in software

several algorithms to choose from

Newton-Raphson
Goldschimdt
Quadratic series expansion
...

the freedom of software:

quick and dirty, or accurate but slow
high throughput or short latency
...

and two more books
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Should a processor include a divider? (3)

Answer in 2018 is : YES again (Bruguera, Arith 2018)

a double-precision divider in 11 cycles for ARM processors

thanks to a totally wasteful implementation

hardware: 20 fast 58-bit adders, 12 58-bit muxes, tables, and more ...
hardware speculation all over the place:
compute many options in parallel, then discard them all except one

in a processor that is supposed to go in your smartphone?!?

We do this to reduce overal energy consumption!
There is this huge superscalar ARM core that consumes a lot,

we save energy if we can switch it off a few cycles earlier
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A good example of dark silicon made useful

Dark silicon?

In current tech, you can no longer
use 100% of the transistors 100% of the time

without destroying your chip.

We just can’t dissipate the heat, and it gets worse with Moore’s Law.
“Dark silicon” is the percentage that must be off at a given time

(picture from a 2013 HiPEAC keynote by Doug Burger)
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Pleasant times to be an architect

One way out the dark silicon apocalypse (M.B. Taylor, 2012)

Hardware implementations of rare (but useful) operations:

when used, dramatically reduce the energy per operation
(compared to a software implementation that would take many more cycles)

when unused (i.e. most of the time), serve as radiator for the parts in use
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Should a processor include elementary functions? (1)

SPICE Model-Evaluation, cut from Kapre and DeHon (FPL 2009)

Dura Amdahl lex, sed lex

add and mult: 2 to 5 cycles

exp or log: 10 to 100 cycles

Here the processor spends most of its time computing elementary functions
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Should a processor include elementary functions? (2)

Answer in 1976 is YES (Paul&Wilson)
... the initial x87 floating-point coprocessor supports a basic set of elementary functions

implemented in microcode

with some hardware assistance, in particular the 80-bit floating-point format.
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Should a processor include elementary functions? (3)

Answer in 1991 is NO (Tang)

Table-based algorithms

Moore’s Law means cheap memory

Fast algorithms thanks to huge (tens of Kbytes!) tables of pre-computed values

Software beats micro-code, which cannot afford such tables

None of the RISC processors designed in this period
even considers elementary functions support
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Should a processor include elementary functions? (4)

Answer in 2025 is... sometimes?

A few low-precision hardware functions in NVidia GPUs (Oberman & Siu 2005)

The SpiNNaker-2 chip includes hardware exp and log (Mikaitis et al. 2018)

Intel AVX-512 includes all sort of fancy floating-point instructions to speed up
elementary function evaluation (Anderson et al. 2018)

These days, countless machine learning accelerators include ad-hoc exponential
hardware for SoftMax
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I won’t answer the other questions here

✓ Should a processor include a divider and square root?

✓ Should a processor include elementary functions (exp, log sine/cosine)?

Should a processor include decimal hardware?

Should a processor include a multiplier modulo 3329?

Should a processor include an 8-bit tensor multiplier?

...

Should a processor include an instruction to divide a floating-point number by 3?
at least this one is clear: no, of course.
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Enters the Field-Programmable Gate Arrays

FPGAs?

Programmable chips,
but the programming model is the digital circuit

you don’t develop programs, you design circuits;

you don’t compile, you synthesize;

you don’t load a program, you configure an FPGA.

“Reconfigurable computing” means “computing with FPGAs”
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One nice things with FPGAs

There is a simpler answer to all these questions:

Should an application running on an FPGA include a circuit for

✓ division? square root? Yes iff your application needs it
✓ elementary functions? Yes iff your application needs it
✓ FFT operator? Yes iff your application needs it
✓ multiplier by log(2)? By sin 17π

256 ? Yes iff your application needs it

...

In reconfigurable computing, useful means: useful to one application.

Application-specific arithmetic

All sorts of useful arithmetic operators that just wouldn’t make sense in a processor...

... and therefore didn’t yet have a book dedicated to them.
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Conclusion so far

Application-specific arithmetic ⊇ arithmetic for CPUs or GPGPUs

This is a qualitative question, but there is a related quantitative question:

How many bits?

In a processor, data is 8, 16, 32 or 64 bits (at best).
In an FPGA, data formats may be tightly fitted to the requirements of the application:

if you need 17 bits, compute only 17 bits

Compute as few bits as possible, but compute them correctly

If the lower bits carry useless noise, you don’t want to compute them...

... and you want even less to store them, transmit them, compute on them.

Computing just right
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Enough advertising for the book

Application-specific arithmetic is also the subject of the FloPoCo software project

http://flopoco.org/

Open source C++

Input operator specifications, outputs synthesizable VHDL

Generates an infinity of operators

... (and their test bench, because we couldn’t test them all)

Always with clean (IEEE754-inspired) specifications:

An arithmetic operation is a function (in the mathematical sense)
An operator is the implementation of such a function:

operator(x) = rounding(operation(x))

so the precision of the output format defines the accuracy of the operator

Any mathematical function is of interest! We are busy until retirement.
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Let us introduce the running example of this talk

What do P.T.P. Tang, Ch. Lauter, and G. Melquiond
have in common?

They have worked on the floating-point exponential
(here a hardware variant of Tang’s algorithm)−→

Computing just right

Each wire, each component is
tailored to its context with love and care.

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

F. de Dinechin & M. Kumm Application-specific arithmetic 18



Let us introduce the running example of this talk

What do P.T.P. Tang, Ch. Lauter, and G. Melquiond
have in common?

They have worked on the floating-point exponential
(here a hardware variant of Tang’s algorithm)−→

Computing just right

Each wire, each component is
tailored to its context with love and care.

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

F. de Dinechin & M. Kumm Application-specific arithmetic 18



Let us introduce the running example of this talk

What do P.T.P. Tang, Ch. Lauter, and G. Melquiond
have in common?

They have worked on the floating-point exponential
(here a hardware variant of Tang’s algorithm)−→

Computing just right

Each wire, each component is
tailored to its context with love and care.

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

F. de Dinechin & M. Kumm Application-specific arithmetic 18



Conclusion of the introduction

Arithmetic in software versus hardware

In a processor, constraint: data is 8, 16, 32 or 64 bits (at best).

In a circuit, freedom: we may choose, for each variable,
how many bits are computed/stored/transmitted! −→ the opportunities

Overwhelming freedom! Help! −→ the challenges
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Opportunities of application-specific arithmetic

1. Operator parameterization

2. Operator specialization

3. Resource sharing

4. Operator fusion

5. Target-specific optimizations

6. Function evaluation
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Opportunity #1: Operator (over-)parameterization
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ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin & M. Kumm Application-specific arithmetic 22



Opportunity #1: Operator (over-)parameterization

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin & M. Kumm Application-specific arithmetic 22



Opportunity #1: Operator (over-)parameterization

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin & M. Kumm Application-specific arithmetic 22



Opportunity #1: Operator (over-)parameterization

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin & M. Kumm Application-specific arithmetic 22



Opportunity #1: Operator (over-)parameterization

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

ufix(wE − 2,−4)

ufix(wE , 0)

sfix(−1,−wF − g)

14

12

56

Example:

Multipliers of all shapes and sizes

In a double-precision exponential,

wE = 11, wF = 52,

first multiplier 14-bits in, 12 bits out

second multiplier 12-bits in, 56 bits out
... and truncated left and right

F. de Dinechin & M. Kumm Application-specific arithmetic 22



Over-parameterization is a Good Thing

⊖ OK, there is a bit more work involved in designing a parametric operator

To start with, it must be a hardware-generating program

⊕ Direct benefit to end-users: freedom of choice

⊕ Easy to retarget, future-proof, etc.

⊕ It actually simplifies design of composite operators (e.g. the exponential)

No need to take any dramatic decision in the design phase:
You don’t know how many bits on this wire make sense? Keep it open as a parameter.
Then estimate cost and accuracy as a function of the parameters
Then find the optimal values of the parameters,

e.g. using common sense or ILP (whichever gives the best results)
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Opportunities of application-specific arithmetic

1. Operator parameterization

2. Operator specialization

3. Resource sharing

4. Operator fusion

5. Target-specific optimizations

6. Function evaluation

F. de Dinechin & M. Kumm Application-specific arithmetic 24



Opportunity #2: Operator specialization

Division by 3 (for various values of 3)
correctly rounded floating-point division by 3 and 9 (Jacobi, etc)
round-robin addressing with 3 banks of memory (need quotient and remainder)
...

Multiplications by constants
Integer constants, or reals such as log(2) or sin(42π/256)
Two main techniques, tens of papers
Relevant in digital filters, linear transforms (like FFTs), etc.

A squarer is a multiplier specialization

× x2x

FP adder for positive numbers only (it saves cancellation management)
Specialization of elementary functions to specific domains

Stable SoftMax needs ex for x < 0 only
...

...
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Maybe more people will understand division by 3 than exponential?

Dividing an hexadecimal number by 3

3F 2 D
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Division by 3 should not be more complex than multiplication by 3

F

0

D2

020 5

3F 2 D

R0 = RDivBy3

X0

Q0

4

4

2
DivBy3

X1

Q1

4

4

2
DivBy3

X2

Q2

4

3

2

R1R2

R3 = 0

OK, this looks like an architecture, but we still need to build this (smaller) DivBy3 box.

If you don’t know how to compute it, then tabulate it

... here a table of 26 entries of 6 bits each.
(small enough to be called a truth table and submitted to synthesis tools)
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Tabulation, the Swiss army knife of the lazy and the stupid

unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Being unable to trust my reasoning, I learnt by heart
the results of all the possible multiplications

(E. Ionesco)

... and all the possible exponentials

... and all the possible values of eZ − Z − 1

... and indeed, all the possible multiplications

Reading a tabulated value is very efficient
when the table is close to the consumer.
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Opportunities of application-specific arithmetic

1. Operator parameterization

2. Operator specialization

3. Resource sharing

4. Operator fusion

5. Target-specific optimizations

6. Function evaluation
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Opportunity #3: Resource sharing

A squarer is smaller than a multipliers
because it shares and reuses partial products.

Karatsuba shares and re-uses intermediate results in large multipliers.

Multiplication by constant(s) (yes, again)

321
× 321

321
642
963

103041
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Single Constant Multiplication

Even the Pentium required a ×3 constant multiplication (for higher radix float mult.)

source: https://www.righto.com/2025/03/pentium-multiplier-adder-reverse-engineered.html
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Single Constant Multiplication

Realizing constant multiplications by additions,
subtractions and bit-shifts

Goal is to find circuit with minimum adders
(NP-hard optimization problem)

Commonly denoted as Single Constant
Multiplication (SCM)
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Single Constant Multiplication

Gustafsson (2002): Graphs with up to 5 adders
cover all constants up to 19 bit

by enumeration of all the graphs

Today: Integer Linear Programming (ILP) and
(very recent) a satisfiability (SAT) method that
scales well to larger constants (∼32 bits)

6.1 Constant multiplication using shift-and-add 107

(1.1) (2.1) (2.2) (3.1) (3.2) (3.3) (3.4) (4.1)

(4.2) (4.3) (4.4) (4.5) (4.6) (4.7)

(4.8) (4.9) (4.10) (5.1) (5.2) (5.3)

(5.4) (5.5) (5.6) (5.7) (5.8)

(5.9) (5.10) (5.11) (5.12) (5.13)

(5.14) (5.15) (5.16) (5.17) (5.18)

(5.19) (5.20) (5.21) (5.22)

(5.23) (5.24) (5.25) (5.26)

(5.27) (5.28) (5.29) (5.30)

Figure 6.2: All vertex reduced graph topologies up to 5 adders

107

All graph topologies up to 5 adders
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Multiple Constant Multiplication

More opportunities when multiplying with several constants (constant vector × scalar):

≠+

Optimal SCM Optimal SCM Optimal MCM
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Constant Matrix Multiplication

And even more opportunities when multiplying a constant matrix with a vector:

(
y1
y2

)
=

(
43 51
71 87

)
·
(

x1
x2

)

PREPRINT, COPYRIGHT IEEE, SEE HTTPS://DOI.ORG/10.1109/TC.2017.2701365 3

(a) MCM {43,71} (b) MCM {51,87}

MCM-Block
(4 Add/Sub)

MCM-Block
(4 Add/Sub)

(c) CMM with MCM blocks (d) Direct CMM

Fig. 2. Example CMM operations

Horrocks modified (BHM) MCM optimization algorithm
[24] to solve the CMM problem. This inspired many
other authors to develop CMM optimization methods.
As it is a generalization of the NP-complete single
constant multiplication (SCM) problem [25] it is also
NP-complete and the algorithms so far are heuristics.
Another CMM heuristic based on an MCM heuristic
[26] was proposed by Gustafsson et al. [27]. They trans-
ferred the CMM problem to a graph representation in
which a minimum spanning tree (MST) has to be found.
This MST yields a new matrix with reduced complexity
which is used for the next iteration until the matrix
only contains ones and zeros. A CMM method based
on common sub-expression elimination (CSE) was intro-
duced by Macleod and Dempster [28]. They represent
the CMM instance by using an i⇥j⇥k 3D matrix which
contains the signed digit (SD) value at bit position k
for the constant of row i in column j. Then, two-term
subexpressions that occur most often are searched and
subsequently eliminated. Another method for optimiz-
ing CMM using a genetic algorithm (GA) was proposed
by Kinane et al. [29], [30]. Permutations from different
SD representations are taken to extract valid SOP sub-
terms. These are then combined and selected by a GA.

3 PROPOSED CMM ALGORITHM

The proposed CMM algorithm is described in this sec-
tion, starting with some preliminary considerations and
a problem definition, followed by a detailed description
of the optimization steps. The overall optimization algo-
rithm follows a depth-first search (DFS) approach. As
the depth search is based on ideas of the previously
proposed PMCM algorithm RPAG [11] it is called RPAG-
CMM.

3.1 Graph Representation
Each node in a CMM adder graph can be represented by
a vector of input weights instead of a scalar weight like
for MCM adder graphs [27]. This vector of length N cor-
responds to the sum of weighted inputs where element
i corresponds to the (multiplicative) weight of input
i, e. g., the vector (43, 51) corresponds to 43x1 + 51x2.
As a consequence, the inputs are represented by their
corresponding unit vector. Now, each node corresponds
to an extended A-operation which is defined for vectors
as

Aq(~u,~v) = |2l1~u + (�1)sg2l2~v | 2�r , (7)

i. e., all shift operations are performed element-wise. As
there are infinite combinations possible for unbounded
shifts the A-operation is typically evaluated up to a limit
xmax. This limit is usually chosen as xmax = 2B+1 [10],
where B is equal to the maximum bit width of the
coefficients. In our case, it is the maximum of all bit
widths of the matrix elements.

3.2 Adder Depth and Pipeline Depth
The minimal AD for a vector node in an adder graph
can be obtained by evaluating the minimum signed
digit (MSD) representations of the vector elements [31].
In the signed digit (SD) number system, the digits are
out of the values {�1, 0, 1}, where digit �1 is usually
denoted as 1. It is redundant, so an MSD number is
defined to have a minimal number of non-zeros. In
a constant multiplication, each non-zero digit of the
constant corresponds to a partial product which has to
be bit-shifted and added/subtracted to get the product.
A minimal AD can then be obtained by using a binary
adder tree. Hence, if constant c has nz(c) non-zero digits,
there are nz(c) � 1 adders in

ADmin(c) = dlog2(nz(c))e (8)

stages necessary. For a vector ~c, the minimal AD is given
by the sum over the non-zeros of all elements in the
vector [31]:

ADmin(~c) =

&
log2

 
NX

n=1

nz(cn)

!'
(9)

Now, the total AD for the CMM instance can be obtained
by finding the maximum AD of the rows of the coeffi-
cient matrix C. If C is defined as a column vector (size
M ) of row vectors (each size N ), i. e, C = (~c1~c2 . . .~cM )T

then, the total AD is [31]:

ADmin(C) = max
~cm2C

ADmin(~cm) . (10)

The pipeline depth has to be at least the adder depth
if each adder is pipelined. As each extra pipeline stage
introduces additional nodes in the PAG, it is unlikely
that there exists a graph with higher depth but less cost.
Therefore, we define the number of pipeline stages S to
be as low as the minimal AD:

S := ADmin(C) (11)
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Application-specific Multipliers

Tune the multiplicands to your application!
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Fig. 24.17 Distribution for CNN weights and constant multiplier coefficients. 

logic element (BLE) that is used to construct the ripple-carry adder (see 
Sect. 5.4.3). By doing so, the additional MUX(es) come without extra cost. 
For instance, the whole circuit of Fig. 24.18 consumes the same resources 
as two adders (and is therefore called 2-Add RCCM in the following). As 
Table 24.5 illustrates, it can multiply by 15 different coefficients, which are 
configured using the select lines . s0 to . s3.

Weight distribution of AlexNet and MobileNet
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Fig. 24.18 2-Add RCCM topology for the coefficients .±{0, 1, 2, 8, 28, 36, 44, 92}. 

This idea was evaluated for RCCMs that utilize 2, 3, and 4 adders (called 
2-Add, 3-Add, and 4-Add RCCMs). The closest coefficient sets obtained for 
the AlexNet model are given in Table 24.6. Their distributions are shown in 
Fig. 24.17b, c and d. They are similar to that of the pretrained model shown 
in Fig. 24.17a. 

Using a variant of quantization-aware training (see Sect. 24.4.4), the 
weights can be trained to the closest fixed-point representations that cor-
respond to the RCCM integers listed in Table 24.6. Using an activation word 
size of 8 bits, a top-1 accuracy close to the floating-point baseline could be 
achieved, outperforming nets using binary of ternary weights with a rela-
tively small increase of LUT resources (about 20%) [Far+20]. 

24.6.4 Unrolling a Ternary CNN 

This case study attempts to implement an image classification CNN that can 
process one pixel of the input image each cycle, leading to one classification 
every .A0

x × A0
y clock cycles (the input image size). A fully unrolled network 

would process one image per cycle, but this is currently unfeasible consid-
ering the size of modern networks. It can hence be classified as a stream 
architecture (middle part of Fig. 24.12) but unrolled in such a way to exploit

Reconf. multiplier topology for the coefficients
±{0, 1, 2, 8, 28, 36, 44, 92}
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Opportunities of application-specific arithmetic

1. Operator parameterization

2. Operator specialization

3. Resource sharing

4. Operator fusion

5. Target-specific optimizations

6. Function evaluation
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Opportunity #4: Operator fusion

3 examples among many others:

We just saw multiple constant multiplication.

A squared norm in floating point: X 2 + Y 2 + Z 2

FP unpack / round / pack only once
parallel execution
no need to handle cancellations
symmetry respected thanks to internal fixed-point
altogether smaller, faster, more accurate

than 3 FP× and 2 FP +

A very generic idea: bit-level merged arithmetic

many-term sums, products, sums of products, ...
... multi-variate polynomials

a generic framework: the bit heap
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Merged arithmetic in bit heaps

One data-structure to rule them all... and in the hardware to bind them

Adder

Multi-adder

Multiplier

Constant multiplier

Complex product
...

Polynomial
Multipartite

∑
bi2

wi

Algorithmic description

Architecture generation

ASIC tech. yyy
ASIC tech. xxx

...... FPGA yyy
FPGA xxx
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Weighted bits

Integers or real numbers represented in binary fixed-point

X =
imax∑

i=imin

2ixi

Representation as a dot diagram

x0x1x2x3x4x5x6x7

weight 2021222324252627
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The historical bit heap

X × Y = (
∑imax

i=imin
2ixi )× (

∑jmax

j=jmin
2jyj)

=
∑

i ,j

2i+jxiyj

A multiplier is an architecture that computes this sum.

Historical motivation for bit heaps
∑

i ,j

2i+jxiyj expresses the bit-level parallelism of the problem

(freedom thanks to associativity and commutativity of addition)
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Beyond product

A+

XY =
∑

i ,j

2i+jxiyj

x3y0

x2y1x3y1

x1y2x2y2x3y2

x0y3x1y3x2y3x3y3 x0y0

x1y0

x2y0

x0y1

x1y1

x0y2

a0a1a2a3a4a5a6a7a8a9

When generating an architecture

consider only one big sum of weighted bits

get rid of artificial sequentiality (inside operators, and between operators)

a global optimization instead of several local ones (and solved by ILP)
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Computing the sum: bit heap compression
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When you have a good hammer, you see nails everywhere

A sine/cosine architecture (Iştoan, HEART 2013):

s q o A Yred

T T

T

T T

T

T

T

Z 3/6Z 2/2

×π
Sin/Cos table

sinPiX cosPiX

Swap/negate

sinZ

cosPiA
sinPiA

Z

sinAcosZ cosAcosZ
sinAsinZ cosAsinZ
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Bit heaps for some operators and filters

w=16 bits

Why are some people still insisting I should call these “bit arrays”?
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Opportunities of application-specific arithmetic

1. Operator parameterization

2. Operator specialization

3. Resource sharing

4. Operator fusion

5. Target-specific optimizations

6. Function evaluation
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Opportunity #5: Target-specific optimizations

Optimizing gates does not mean that you optimize for the target technology (here: FPGAs)

D

Q

0
1

LUT

O6 O5

D

Q

LUT
016=

FA

D Q

We should look the other way around!
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Addition on FPGAs

There is so much free space in FPGA adders:

0
1

0
1

0
1

0
1

 Carry
Logic

Slice
LUT

⇓

So, let’s use this space to compress more bits!
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A bestiary of compressors

⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓ ⇓

⇓ ⇓ ⇓ ⇓

. . .

⇓
. . .

. . .

⇓
. . .

. . .

⇓
. . .. . .
. . .

. . .

⇓
. . .. . .
. . .

Designing a compressor tree now becomes a challenge!
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A bestiary of compressors

Heuristic and ILP-based optimal methods are there!

190 7 Sums of Weighted Bits

Table 7.4 Variables (top) and constants (bottom) used in the compressor tree ILP formu-
lation. 

Variable/ 
Constant 

Meaning 

.Ns,c ∈ N Number of bits in stage s and column c 

.ks,e,c ∈ N Number of compressors of type e in stage s and column c 

.ce ∈ R Cost (e. g., in LUTs) of compressor e 

.Me,c ∈ N Number of bits removed from compressor e in column c 

.Ke,c ∈ N Number of bits generated from compressor e in column c 

.E ∈ N Number of compressing elements 

.C ∈ N Maximum number of columns 

.Ce ∈ N Maximum number of columns of compressor e 

.S ∈ N Number of stages 

. minimize
S−1

∑
s=0

C−1

∑
c=0

E−1

∑
e=0

ceks,e,c

subject to 

. C1 : Ns−1,c ≤
E−1

∑
e=0

Ce−1

∑
c′=0

Me,c+c′ ks−1,e,c+c′ for s = 1 . . . S, c = 0 . . . C − 1

C2 : Ns,c =
E−1

∑
e=0

Ce−1

∑
c′=0

Ke,c+c′ ks−1,e,c+c′ for s = 1 . . . S, c = 0 . . . C − 1

C3 : NS,c ≤ I

The objective is to minimize the resource cost. For that, the number of 
used GPCs per stage and column .ks,e,c are weighted by their corresponding 
cost . ce. 

Now, the first constraints (C1) ensure that all bits in each column and 
stage except the output stage are connected to inputs of compressors. The 
fact that there may be more compressor inputs than bits available to com-
press is considered by the .≤-relation. Constraints C2 simply compute the 
number of bits produced by compressors which are taken as input to the 
next stage. Finally, the column height of the output stage (.s = S) is con-
strained by C3 to be maximally equal to the input count of the final adder I 
(see (7.29)). 

Here again, one key element in the model is that a single-input, single-
output (1;1) pseudo GPC is included in the set of compressors.
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Multiplier Tiling

Instead of fixed radix-2, -4, etc. we use what the target provides (Logic and DSP)!

Beispiel: Multiplikation in double precision
MARTIN KUMM, Hochschule Fulda 10

08244953
0

17

34

41

53

53 ⇥ 53, 5 DSP

0245053
0

17

34

53

53 ⇥ 53, 6 DSP

0317273453
0

24

41

58

53

53 ⇥ 53, 7 DSP

1229415358
0

12

24

41

58

53 ⇥ 53, 8 DSP

012244158

12

29

41

53

58

53 ⇥ 53, 9 DSPF. de Dinechin & M. Kumm Application-specific arithmetic 51



Opportunities of application-specific arithmetic

1. Operator parameterization

2. Operator specialization

3. Resource sharing

4. Operator fusion

5. Target-specific optimizations

6. Function evaluation
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Opportunity #6: Function evaluation with generic approximators

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

Polynomial Coefficient Table

× + × + × +
S2 S1

C0C1C2C3

X

A

α

w

Y

w − α
Ỹ3 Ỹ2

Ỹ3 = X

fi
n
a
l
ro
u
n
dP̃(Y )

R

The FloPoCo FixFunctionByPiecewisePoly operator

state-of-the-art polynomial approximation

each multiplier tailored with love and care

Also multipartite tables, filter approximators, and more to come.
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Conclusion

Anti-introduction: traditional arithmetic

Opportunities of application-specific arithmetic

Conclusion
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Lessons learnt over the past 15 years

There is arithmetic beyond the ARITH logo

For good floating-point, you also need good fixed-point

(For good posit, you also need good floating-point)

Implementing a hardware generator is even more fun than designing hardware

Martin and his disciples are quietly replacing all the heuristic tinkered by Florent
with mathematical models that capture the optimal operator

FloPoCo only solves the easy problem

DONE Good, flexible, versatile application-specific operators

TODO Now how many bits do I need for this variable in my application?
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Regrettably, there still exist people who have not read all my papers

Example of bug report by a highly valued FloPoCo user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here?

≈ 1/3± 2−14 Argh! Not Computing Just Right!

Solution 1: Did I mention that we published this book?

Solution2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)

Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin & M. Kumm Application-specific arithmetic 56



Regrettably, there still exist people who have not read all my papers

Example of bug report by a highly valued FloPoCo user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

Solution 1: Did I mention that we published this book?

Solution2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)

Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin & M. Kumm Application-specific arithmetic 56



Regrettably, there still exist people who have not read all my papers

Example of bug report by a highly valued FloPoCo user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

Solution 1: Did I mention that we published this book?

Solution2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)

Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin & M. Kumm Application-specific arithmetic 56



Regrettably, there still exist people who have not read all my papers

Example of bug report by a highly valued FloPoCo user

./flopoco FPConstMult wE=8 wF=23 constant=0.3333

Can you see what is wrong here? ≈ 1/3± 2−14 Argh! Not Computing Just Right!

Solution 1: Did I mention that we published this book?

Solution2

Integrate the FloPoCo spirit in a High-Level Synthesis compiler
(this means a C to hardware compiler, haha)

Current effort with MLIR, the Multi-Level Intermediate Representation.

F. de Dinechin & M. Kumm Application-specific arithmetic 56



Why move useless bits around?

Some of the successive advertising phrases for the FloPoCo project

When FPGAs are better at floating point than microprocessors

Not your neighbor’s FPU

All the operators you will never see in a microprocessor

FPGA arithmetic the way it should be

Circuits computing just right

Fantastic arithmetic beasts (and how to build them)
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Backup slides
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First, a math proficiency test

Three identities to remember from our happy school days

2X = eX log(2) (1)

eA+B = eA × eB (2)

eZ ≈ 1 + Z +
Z 2

2
if Z is small (3)

F. de Dinechin & M. Kumm Application-specific arithmetic 59



unpack

X

shift to fixed point

1.FXEX

×1/ log(2)

×(− log(2)) negate
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Y

eA eZ − Z − 1
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normalize-round-pack
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|Xfix|

|E |
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Ztrunc
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M ≈ eY

excep
tio

n
b
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R
FloPoCo FPExp

We want to obtain eX as

eX = 2E · 1.F
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We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉
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We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉

then
Y ≈ X − E × log 2.
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We want to obtain eX as

eX = 2E · 1.F

Compute

E ≈
⌊

X

log 2

⌉

then
Y ≈ X − E × log 2.

Now

eX = eE log 2+Y

= eE log 2 · eY
= 2E · eY
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We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).
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We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).
Split Y :

Y = A Z
−1 −k −wF − g

i.e. write

Y = A+ Z with Z < 2−k
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We want to obtain eX as

eX = 2E · eY

Now we have to compute eY

with Y ∈ (−1/2, 1/2).
Split Y :

Y = A Z
−1 −k −wF − g

i.e. write

Y = A+ Z with Z < 2−k

so
eY = eA × eZ
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unpack
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Tabulate eA in a ROM
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ : Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ : Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Notice that eZ − 1− Z ≈ Z 2/2 < 2−2k
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ : Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Notice that eZ − 1− Z ≈ Z 2/2 < 2−2k

Evaluate eZ − Z − 1 somewhow
(out of Z truncated to its higher bits only)
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Evaluation of eZ : Z < 2−k , so

eZ ≈ 1 + Z + Z 2/2

Notice that eZ − 1− Z ≈ Z 2/2 < 2−2k

Evaluate eZ − Z − 1 somewhow
(out of Z truncated to its higher bits only)

then add Z to obtain eZ − 1
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Also notice that

eZ = 1.

k−1 zeroes︷ ︸︸ ︷
000...000 zzzz

Evaluate eA × eZ as

eA + eA × (eZ − 1)
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

Also notice that

eZ = 1.

k−1 zeroes︷ ︸︸ ︷
000...000 zzzz

Evaluate eA × eZ as

eA + eA × (eZ − 1)

(before the product, truncate eA to precision
of eZ − 1)
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

And that’s it, we have E and eY
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

And that’s it, we have E and eY

(using only fixed-point computations)
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We want to obtain eX as

eX = 2E · eY

eY = eA × eZ

And that’s it, we have E and eY

(using only fixed-point computations)
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Single-precision magic
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×(− log(2)) negate

+/−
Y

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix|

|E |

A

Z

Ztrunc

CTtrunc

H

P

T

M ≈ eY

excep
tio

n
b
its uo

R
FloPoCo FPExp

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)
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Single-precision magic

unpack

X
flp(wE ,wF )

shift to fixed point

1.FX ufix(0,−wF )EX wE

×1/ log(2)

×(− log(2)) negate

+/−
Y sfix(−1,−wF − g)

eA eZ − Z − 1

+

×

+

normalize-round-pack

sX

|Xfix| ufix(wE − 2,−wF − g)

ufix(−1,−wF − g)

sfix(−1,−wF − g)

ufix(wE − 2,−4)

ufix(wE , 0)
|E |

sfix(−1,−wF − g)

A

sfix(−1,−k) Z
ufix(−k − 1,−wF − g)

Ztrunc

ufix(−k,−wF − g)

C

ufix(0,−wF − g)

ufix(0,−wF − g + k)

Ttrunc

H

ufix(−k − 1, −wF + k − g)

ufix(−2k − 1, −wF − g)

ufix(−k + 1,−wF − g)P

T

M ≈ eY ufix(0,−wF − g)

excep
tio

n
b
its uo

R
flp(wE ,wF )FloPoCo FPExp

Modern FPGAs also have

small multipliers with pre-adders and post-adders

... and dual-ported small memories

Single-precision accurate exponential on Xilinx

one block RAM (0.1% of the chip)

one DSP block (0.1%)

< 400 LUTs (0.1%, ≈ one FP adder)

to compute one exponential per cycle at 500MHz
(∼ one AVX512 core trashing on its 16 FP32 lanes)

For one specific value only of the architectural parameter k!
(over-parameterization is cool)
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