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Correct rounding of the elementary functions

base 2, precision p;

FP number x and integer m (with m somehow larger than p) → one can
compute an approximation y to f (x) whose error on the significand is
≤ 2−m.

can be done with a possible wider format, or using double-word or
triple-word arithmetic at critical places, etc.

is already done in accurate libraries;

deducing a correct rounding of f (x) from y : may not be possible if f (x) is
too close to a breakpoint: a point where the rounding function changes;

in the following: RN (round-to-nearest, ties to even), but all rounding
functions are concerned.
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Example with the sine function in binary32 arithmetic

x sin(x) (in binary)
x1 = 12178540 × 2−23 0.111111100011000010000010100110010001 · · ·
x2 = 9898372 × 2−23 0.1110110010110010011011011000000011111110 · · ·
x3 = 12523099 × 2−23 0.1111111100111001000111010111111111111110110 · · ·

if s is any approximation to sin(x1) with error ≤ 2−24−4, then
RN (s) = RN (sin(x1)). An approximation with error 2−24−3 may not
suffice;

if s is any approximation to sin(x2) with error ≤ 2−24−9, then
RN (s) = RN (sin(x1)). An approximation with error 2−24−8 may not
suffice;

to obtain RN (sin(x3)) with certainty, we need an approximation with
error < 2−24−16.

What can be said in general ?

3



Approximation with error ≤ 2−p−k+1 on the significand

f (x)

2
ef (x)

= 1.xxxx · · · xxxxxxx

p bits, followed by:

00
01
10
11

k = 2

000
001
010
011
100
101
110
111

k = 3

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

k = 4

Probability of failure: 1/2 1/4 1/8

k bits → probability of failure 21−k
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Rule of thumb

If we approximate the significand of f (x) with error ≤ 2−p−k+1 (roughly
speaking, if we compute a p + k-bit approximation to f (x)), the probability of
not being able to deduce RN (f (x)) is around 21−k .

exceptions to that rule: if x is tiny, not all bit strings are possible in
sin(x), exp(x), etc. just after the first p bits. For instance,

sin(1.xxxx · · · x1 × 2−p) = 1.xxxx · · · x01111111111 · · · × 2−p.

in practice this is not a problem, just choose polynomial approximations
where the lowest order term is exactly x for sin or sinh or log(1+ x), 1 for
exp(x), etc. They will automatically deliver correct rounding when x is
tiny enough;

the rule is essential for designing efficient algorithms;
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Expected vs actual worst cases

Rule of thumb → if w is the word size, as there are ≈ 2w FP numbers,
with a p + k-bit approximation there is a total of 2w+1−k failures →
vanishes as soon as k ≈ w + 1.

frequently less in practice: correlations (e.g. log2), function not defined in
full range (exp because of overflow, arcsin, etc.);

actual values (excluding tiny trivial input values):

format p + w + 1 exp log2 arcsin

binary32 57 52 51 54 (|x | > 2−23)

binary64 118 113 108 126 (|x | > 2−25)

→ the rule of thumb is not that bad.
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2-step process (Ziv’s strategy) – typically, k ≈ 10

x
Fast step:
p + k bits

Accurate step:
p +M bits

RN (f (x))

probability 1 − 2−k+1

probability 2−k+1

certainty if M
corresponds
to worst case

probability
1 − 2−M+1

otherwise
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